Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition

  • Saltanat Yegemova al-Farabi Kazakh National University
  • Miras Derbissalin al-Farabi Kazakh National University, Almaty
  • Bulat Kenessov al-Farabi Kazakh National University, Almaty http://orcid.org/0000-0001-8541-0903
  • Jacek Koziel Iowa State University, Ames, Iowa

Abstract

Phenol is a toxic environmental pollutant possessing carcinogenic and mutagenic properties. Determination of phenol in soil by certified methods requires long and laborious sample preparation. Solid-phase microextraction (SPME) allows much simpler and faster determination of pollutants in soils. However, method accuracy is limited by the problem of effective matrix effect control. The aim of this study was to develop a rapid and inexpensive method for the quantitative determination of phenol in soil using SPME, gas chromatography-mass spectrometry and standard addition. Extraction temperature 80°C provides the lowest relative standard deviation being 2.1 and 4.6% for aqueous and soil samples, respectively. Soil equilibration time after addition of phenol standard at 80°C should take at least 6 h. The developed method was successfully tested on model and real soil samples having phenol concentrations 0.44 and 0.059 mg/kg, respectively. Coefficients of linear approximation of calibration dependences were higher than 0.97. Method detection limit depends on the affinity of matrix to analyte and is lower than 10 µg/kg.

Author Biographies

Saltanat Yegemova, al-Farabi Kazakh National University
Center of Physical Chemical Methods of Research and Analysis, Almaty 

Miras Derbissalin, al-Farabi Kazakh National University, Almaty
Center of Physical Chemical Methods of Research and Analysis, Almaty
Bulat Kenessov, al-Farabi Kazakh National University, Almaty
Center of Physical Chemical Methods of Research and Analysis, Almaty

References

1 Kolushpaeva AT (2010) Evaluation of the current state of environmental problems related to pollution of soil [Ocenka sovremennogo sostoyaniya ecologicheskih problem svyazannykh s zagryazneniem pochvennyh sistem]. Proceedings of the International scientific-practical conference “Economics, law, culture in the era of social transformation”, Almaty, Kazakhstan. P.186-187. (In Russian)

 

2 Smith K, Mullins C (2000) Soil and Environmental Analysis. New-York, US. P.35-38. ISBN 0-8247-0414-2

 

3 ATSDR (2008). Toxicological Profile for Phenol. Atlanta, USA.

 

4 Russian Ministry of Health (2003) GN 2.1.6.1338-03 “Concentration limits of pollutants in ambient air of populated areas”. Moscow, Russia.

 

5 Canadian Council of Ministers of the Environment (1997) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Phenol. Winnipeg, Canada.

 

6 Michałowicz J, Duda W (2007) Polish J Environ Stud 16:347-362. URL: http://www.pjoes.com/pdf/16.3/347-362.pdf. (Accessed 01/11/2015)

 

7 Okolelova A, Zheltobruhov V, Merzlyakov A (2013) Basic Research [Fundamental'nye issledovaniya] 4:384-387. (In Russian)

 

8 Kahru A, Maloverjan A, Sillak H, Põllumaa L (2002) Environ Sci Pollut Res Int 1:27-33. http://dx.doi.org/10.1007/bf02987422

 

9 Xing H, Wang X, Chen X, Wang M, Zhao R (2015) J Sep Sci 16:1419-1425. http://dx.doi.org/10.1002/jssc.201500022

 

10 Sirvent G, Sanchez J, Hidaldo M, Salvago V (2009) Int J Environ Anal Chem. 89:293-304. http://dx.doi.org/10.1080/03067310802638285

 

11 US EPA (1996) Method 3540 C. Soxhlet extraction. Washington, USA.

 

12 Santana CM, Ferrera ZS, Padrón ME, Rodríguez JJ (2009) Molecules 14:298-320. http://dx.doi.org/10.3390/molecules14010298

 

13 Souza-Silva É, Reyes-Garcés N, Gómez-Ríos G, Boyaci E, Bojko B, Pawliszyn J (2015) TrAC Trends Anal Chem 71:249-264. http://dx.doi.org/10.1016/j.trac.2015.04.017

 

14 Buchholz K, Pawllszyn J (1994) Anal Chem 66:160-167. http://dx.doi.org/10.1021/ac00073a027

 

15 Bartfik P, Сap L (1997) J Chromatogr A 767:171-175. http://dx.doi.org/10.1016/S0021-9673(96)01090-4

 

16 Simões N, Cardoso V, Ferreira E, Benoliel M, Almeida C (2007) Chemosphere 68:501-510. http://dx.doi.org/10.1016/j.Chemosphere.2006.12.057

 

17 Es-haghi A, Baghernejad M, Bagheri H (2012) Anal Chim Acta 742:17-21. http://dx.doi.org/10.1016/j.aca.2012.01.002

 

18 Llompart M, Blanco B, Cela R (2000) J Microcolumn Sep 12:25-32. http://dx.doi.org/10.1002/(sici)1520-667x(2000)12:1<25::aid-mcs4>3.0.co;2-u

 

19 Baciocchi R, Attinà M, Lombardi G, Boni M (2001) J Chromatogr A 911:135-41. http://dx.doi.org/10.1016/s0021-9673(00)01249-8

 

20 Yegemova S, Kenessov B, Derbissalin M, Koziel J (2015) Map of soil sampling sites for the phenol screening by solid phase microextraction and gas chromatography – mass spectrometry. Google Maps. URL: https://www.google.com/maps/d/edit?mid=zaVQM9knLobU.k_YDraogKdH0&usp=sharing

 

21 Yegemova S, Bakaikina N, Kenessov B, Koziel J (2015) Talanta 143:226-233. http://dx.doi.org/10.1016/j.talanta.2015.05.045

 

22 Subramanyam B, Das A (2009) Desalination 249:914-921. http://dx.doi.org/10.1016/j.desal.2009.05.020

 

23 Carlsen L, Baimatova N, Kenessov B, Kenessova O (2013) Int J Biol Chem 5:49-69. URL: http://ijbch.kaznu.kz/index.php/kaznu/article/view/82. (Accessed 01/11/2015)

 

Cited by: 1

1. Kenessov BN, Koziel J, Bakaikina NV, Orazbayeva D (2016) Perspectives and challenges of on-site quantification of organic pollutants in soils using solid-phase microextraction. TrAC Trends in Analytical Chemistry. In Press. CrossRef

Published
2015-12-30
How to Cite
YEGEMOVA, Saltanat et al. Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition. Chemical Bulletin of Kazakh National University, [S.l.], n. 4, p. 4-12, dec. 2015. ISSN 2312-7554. Available at: <https://bulletin.chemistry.kz/index.php/kaznu/article/view/672>. Date accessed: 18 nov. 2017. doi: https://doi.org/10.15328/cb672.
Section
Analytical Chemistry

Keywords

phenol; soil; quantification; solid-phase microextraction; standard addition; matrix effect