About aerogels based on carbon nanomaterials

  • Fail Sultanov al-Farabi Kazakh National University
  • Zulkhair Mansurov al-Farabi Kazakh National University
Keywords: aerogel, graphene, carbonotubes, superhydrophobic, SEM, specific surface, sponges, polydimethylsiloxane nan

Abstract

In this review a current trends in development and application of carbon nanomaterials and derivatives based on them are presented. Aerogels based on graphene and other carbon nanomaterials present a class of novel ultralight materials in which a liquid phase is completely substituted by gaseous. In its turn graphene based aerogel was named as the lightest material, thus the record of aerographite, which has retained for a long time was beaten. Aerogels are characterized by low density, high surface area and high index of hydrophobicity. In addition, depending on its application, aerogels based on carbon nanomaterials can be electrically conductive and magnetic, while retaining the flexibility of its 3D structure. Impressive properties of novel material – aerogels causes a huge interest of scientists in order to find their application in various fields, ranging from environment problems to medicine and electronics.

Author Biographies

Fail Sultanov, al-Farabi Kazakh National University
Institute of Combustion Problems, Almaty
Zulkhair Mansurov, al-Farabi Kazakh National University
Institute of Combustion Problems, Almaty

References

1 Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Tech 199:10-26. http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060

2 Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Carbohyd Polym 122:293-300. http://dx.doi.org/10.1016/j.carbpol.2015.01.022

3 Maleki H, Durães L, Portugal A (2014) J Non-Cryst Solids 385:55-74. http://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017

4 Zu G, Shen J,  Wei X, Ni X, Zhang Z, Wang J, Liu G (2011) J Non-Cryst Solids 357:2903-2906. http://dx.doi.org/10.1016/j.jnoncrysol.2011.03.031

5 Osaki T, Mori T (2009) J Non-Cryst Solids 355:1590-1596. http://dx.doi.org/10.1016/j.jnoncrysol.2009.06.006

6 Hanzawa Y, Kaneko K, Pekala R, Dresselhaus M (1996) Langmuir 12:6167-6169. http://dx.doi.org/10.1021/la960481t

7 Stoller MD, Park S, Zhu YW (2008) Nano Lett 8:3498-3502. http://dx.doi.org/10.1021/nl802558y

8 Novoselov KS, Geim AK, Morozov SV (2004) Science 306:666-669. http://dx.doi.org/10.1126/science.1102896

9 Lee C, Wei X, Kysar JW (2008) Science 321:385-388. http://dx.doi.org/10.1126/science.1157996

10 He HK, Gao C (2011) Science China Chemistry 54:397-404. http://dx.doi.org/10.1007/s11426-010-4191-9

11  Liu GL, Yu CL, Chen CC (2011). Science China Chemistry 54:1622-1626. http://dx.doi.org/10.1007/s11426-011-4366-z

12  Hu H, Zhao Z, Wan W, Gogotsi Yu, Qiu J (2013) Adv Mater 25:2219-2223. http://dx.doi.org/10.1002/adma.201204530

13  Zhang XT, Sui ZY, Xu B, Yue SF, Luo YJ, Zhan WC, Liu B (2011) J Mater Chem 21:6494-6497. http://dx.doi.org/10.1039/c1jm10239g

14  Yan LF, Chen WF (2011) Nanoscale 3:3132-3137. http://dx.doi.org/10.1039/c1nr10355e

15  Xu YX, Sheng KX, Li C, Shi GQ (2010) ACS Nano 4:4324-4330. http://dx.doi.org/10.1021/nn101187z

16  Lin Y, Ehlert GJ, Bukowsky C, Sodano HA (2011) ACS Applied Materials & Interfaces 3:2200-2203. http://dx.doi.org/10.1021/am200527j

17  Li J, Li J, Meng H, Xie S, Zhang B, Li L, Ma H, Zhang J, Yu M (2014) J Mater Chem A 2:2934-2941. http://dx.doi.org/10.1039/c3ta14725h

18  Vanmaekelbergh D (2011) Nano Today 6:419-437. http://dx.doi.org/10.1016/j.nantod.2011.06.005

19  Li D, Kaner RB (2008) Science 320:1170-1171. http://dx.doi.org/.1126/science.1158180

20  Sun HY, Xu Z, Gao C (2013) Adv Mater 25:2554-2560. http://dx.doi.org/10.1002/adma.201204576

21  Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101-105. http://dx.doi.org/10.1038/nnano.2007.451

22  Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457-460. http://dx.doi.org/10.1038/nature06016

23  Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) J Am Chem Soc 130:5856-5857. http://dx.doi.org/10.1021/ja800745y

24  Wufeng C, Lifeng Y (2011) Nanoscale 3:3132-3137. http://dx.doi.org/10.1039/c1nr10355e

25  Compton OC, An Z, Putz KW, Hong BJ, Hauser BG, Brinson LC, Nguyen SBT (2012) Carbon 50:3399-3406. http://dx.doi.org/10.1016/j.carbon.2012.01.061

26  Xu YX, Sheng KX, Li C, Shi GQ (2010) ACS Nano 4:4324-4330. http://dx.doi.org/10.1021/nn101187z

27  Zhang XT, Sui ZY, Xu B, Yue SF, Luo YJ, Zhan WC (2011). J Mater Chem 21:3634-3640. http://dx.doi.org/10.1039/c0jm03827j

28  Hu H, Zhao Z, Zhou Q,  Zhou Y, Qiu J (2013) Direct polymer infiltration of graphene aerogels for the production of conductive nanocomposite. Proceedings of International Conference “Carbon-2013”, Rio de Janiero, Brazil. P.152-155

29  Hu H, Zhao Z, Wan W, Gogotsi Yu, Qiu J (2014) ACS Applied Materials & Interfaces 6:3242-3249. http://dx.doi.org/10.1021/am4050647

30  Kim KH, Youngseok Oh, Islam MF (2012) Nat Nanotechnol 10:1-5. http://dx.doi.org/10.1038/NNANO.2012.118

31  Suhr J (2007) Nat Nanotechnol 2:417-421. http://dx.doi.org/10.1038/nnano.2007.186

32  Aliev AE (2009) Science 323:1575-1578. http://dx.doi.org/10.1126/science.1168312

33  Bryning MB (2007) Adv Mater 19:661-664. http://dx.doi.org/10.1002/adma.200601748

34  Kim KH, Vural M, Islam MF (2011) Adv Mater 23:2865-2869. http://dx.doi.org/10.1002/adma.201100310

35  Hu H, Zhao Z, Wan W, Gogotsi Yu, Qiu J (2014) Environmental Science & Technology Letters 1:214−220. http://dx.doi.org/10.1021/ez500021w

36  Gao XF, Jiang L (2004) Nature 432:36. http://dx.doi.org/10.1038/432036a

37  Dong XC, Chen J, Ma YW, Wang J, Chan-Park MB, Liu XM, Wang LH, Huang W, Chen P (2012) Chem Commun 48:10660−10662. http://dx.doi.org/10.1039/c2cc35844a

38  Ci LJ, Manikoth SM, Li XS, Vajtai R, Ajayan PM (2007) Adv Mater 19:3300-3303. http://dx.doi.org/10.1002/adma.200602974

39  Sultanov FR, Bejsenov RE, Mansurov ZA, Pei SS (2014) Issledovanie gidrofobnyh i sorbcionnyh svojstv ajerogelej na osnove uglerodnyh nanotrubok. Materialy VIII mezhdunarodnyj simpozium «Fizika i himija uglerodnyh materialov/Nanoinzhenerija». – 17-19 sentjabrja. – Almaty. - P.94-98. (in Russian)

40  Xiao N, Zhou Y, Ling Zh, Qiu J (2013) Carbon 59:530-536. http://dx.doi.org/10.1016/j.carbon.2013.03.051

41  Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Nat Mater 10:424-428. http://dx.doi.org/10.1038/nmat3001

42  Yong YC, Dong XC, Chan-Park MB, Song H, Chen P (2012) ACS Nano 6:2394-2400. http://dx.doi.org/10.1021/nn204656d

43  Marmur A (2003) Langmuir 19:8343-8348. http://dx.doi.org/10.1021/la0344682

44  Larmour IA, Bell SEJ, Saunders GC (2007) Angew Chem Int Edit 46:1710-1712. http://dx.doi.org/10.1002/anie.200604596

45  Moura FCC, Lago RM (2009) Appl Catal B-Environ 90:436-440. http://dx.doi.org/10.1016/j.apcatb.2009.04.003

46  Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen  P (2012) Chem Commun 48:11644-11646. http://dx.doi.org/10.1039/c2cc36962a

47  Dong XC, Xing GC, Mary MBC, Shi WH, Xiao N, Wang J, Yan QY, Sum TC, Huang W, Chen P (2011) Carbon 49:5071-5078. http://dx.doi.org/10.1016/j.carbon.2011.07.025

48  Lee SH, Lee DH, Lee WJ, Kim SO (2011) Adv Funct Mater 21: 1338-1354. http://dx.doi.org/10.1002/adfm.201002048

49  Dai LM, Chang DW, Jaek JB, Lu W (2012) Small 8:1130-1166. http://dx.doi.org/10.1002/smll.201101594

50  Zhao W, Li Y, Wang S, He X, Shang Yu, Peng Q, Wang Ch, Du Sh, Gui X, Yang Y, Yuan Q, Shi E, Wu Sh, Xu W, Cao A (2014) Сarbon 76:19-26. http://dx.doi.org/10.1016/j.carbon.2014.04.032

51  Mi X, Huang GB, Xie WS (2012) Carbon 50:4856-4864. http://dx.doi.org/10.1016/j.carbon.2012.06.013

52  Zhao GX, Li JX, Ren XM (2011) Environ Sci Technol 45:10454-10462. http://dx.doi.org/10.1021/es203439v

53  Li ZJ, Chen F, Yuan LY (2012) Chem Eng J 210:539-546. http://dx.doi.org/10.1016/j.cej.2012.09.030

54  Jiang GD, Lin ZF, Chen C (2011) Carbon 49:2693-2701. http://dx.doi.org/10.1016/j.carbon.2011.02.059

55  Liu XJ, Pan LK, Zhao QF (2012) Chem Eng J 183:238-243. http://dx.doi.org/10.1016/j.cej.2011.12.068

56  Chandra V, Kim KS (2011) Chem Commun 47:3942-3944. http://dx.doi.org/10.1039/c1cc00005e

57  Madadrang CJ, Kim HY, Gao GH (2012) ACS Applied Materials & Interfaces 4:1186-1193. http://dx.doi.org/10.1021/am201645g

58  Ma HL, Zhang YW, Hu QH (2012) J Mater Chem 22:5914-5916. http://dx.doi.org/10.1039/c2jm00145d

59  Fan LL, Luo CN, Li XJ (2012) Bioresource Technol 114:703-706. http://dx.doi.org/10.1016/j.biortech.2012.02.067

60  Fan LL, Luo CN, Sun M (2013) Colloid Surface B 103:601-607. http://dx.doi.org/10.1016/j.colsurfb.2012.11.023

61  Maliyekkal M, Sreeprasad TS, Krishnan D (2013) Small 9:273-283. http://dx.doi.org/10.1002/smll.201201125

62  Liu XT, Zhang HY, Ma YQ (2013) J Mater Chem A 1:1875-1884. http://dx.doi.org/10.1039/c2ta00173j

63  Xu J, Wang L, Zhu YF (2012). Langmuir 28:8418-8425. http://dx.doi.org/10.1021/la301476p

64  Ma HW, Shen JF, Shi M (2012) Appl Catal B-Environ 121-122:198−205. http://dx.doi.org/10.1016/j.apcatb.2012.03.023

65  Sultanov FR, Pei SS, Auyelkhankyzy M, Smagulova G, Lesbayev BT, Mansurov ZA (2014) Eurasian Chemico-Technological Journal 16:263-267.

Published
2015-02-25
How to Cite
Sultanov, F., & Mansurov, Z. (2015). About aerogels based on carbon nanomaterials. Chemical Bulletin of Kazakh National University, 76(4), 67-82. https://doi.org/https://doi.org/10.15328/chemb_2014_467-82