Synthesis of nanocomposite material through modification of graphene oxide by nanocellulose

Keywords: graphene, graphene oxide, activated carbon, nanocellulose, nanocomposite


Intensive research of nanocomposites contributes to the development of new materials in the fields of medicine, nanoelectronics, energy, biotechnology, information technology. Therefore, the synthesis of new materials by modifying of graphene oxide (GO) with nanocellulose and the study of its properties are of great interest. In this study synthesized nanocomposite material by modifying of graphene oxide (GO) from activated carbon (BAU-A) in a 1:1 volume ratio with nanocellulose (NC) from hemp stems belonging to the annual plant, and their chemical structure was studied by FTIR and UV-spectroscopy. The results of the study showed the absorption of the etheric bond C = O in the UV spectrum at full length 243 nm. The IR spectrum showed all the new etheric bonds O = C - OH at a wavelength of 1625 cm-1. The average particle sizes of GO was 352 nm and NC was 470 nm in length and 80 nm in width. The SEM analysis indicating the NC as a contact layer between ultralow thicknesses of the GO layers. The XRD analysis indicated GO-NC composite film is a substance comprising GO and NC. According to the results, modification of graphene oxide showed that its scope can be expanded as much as possible.


1. Wang R, Ma Q, Zhang H, Ma Z et al (2019) J Polym Environ 27:148-157. Crossref

2. Nayak J, Vashishtha A (2018) IJRAR 5(4):513-524. Crossref

3. Savitskyi DP, Makarov AS, Goncharuk VV (2016) Reports of the National Academy of Sciences of Ukraine 6:87-94. (In Russian). Crossref

4. Huang H, Ying Y, Peng X (2014) J Mater Chem A 2:13772-13782. Crossref

5. Yeh C, Raidongia K, Shao J, Yang Q, Huang J (2015) Nat Chem 7:166-170. Crossref

6. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, et al (2007) Carbon 45:1558-1565. Crossref

7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas K, et al (2006) Nature 442:282-286. Crossref

8. Wang L, Ye Y, Lu X, Wu Y, et al (2013) Electrochim Acta 114:223-232. Crossref

9. Si Y, Samulski ET (2008) Nano Lett 8:1679-1682. Crossref

10. Weng Z, Su Y, Wang DW, Li F, et al (2011) Adv Energy Mater 1(5):917-922. Crossref

11. Du X, Zhang Z, Liu W, Deng Y (2017) 35:299-320. Crossref

12. Wang N, Wang YF, Omer AM, Ouyang X (2017) Anal Bioanal Chem 409:6643-6653. Crossref

13. Tian SY, Guo JH, Zhao Ch, et al (2019) J Nanosci Nanotechno 19:2147-2153. Crossref

14. Akatan K, Kabdraxmanova SK, Imasheva AA, Abilev MB, Ibraeva JE, Kudaibergenov SE (2020) NNC RK Bulletin 1(81):35-38. (In Kazakh)

15. Marcano DC (2010) ACS Nano 4:4806-4814. Crossref

16. Peng L (2015) Nature Comm 6(1):5716. Crossref

17. Plermjai K, Boonyarattanakalin K, Mekprasart W, Pavasupree S, et al (2010) AIP Conference Proceedings 020005. Crossref

18. Sirvio JA, Visanko M, Heiskanen JP, Liimatainen H (2016) J Mater Chem A 4:6368-6375. Crossref

19. Szabo T, Berkesi O, Dekany I (2005) Carbon 43:3186-3189. Crossref

20. Shen L, Shen HS, Zhang CL (2010) Mater Design 31:4445-4449. Crossref

21. Wojtoniszaka MX, Chena RJ, Wajdab KA, et al (2012) Colloid Surface B 89:79-85. Crossref

22. Qi C, Yang L, Xu H, He S, Men Y (2017) J Colloid Interf Sci 486:84–96. Crossref

23. Tang G, Jiang ZG, Li X et al (2014) Carbon 77:592-599. Crossref

24. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Int J Biol Macromol 103:931-940. Crossref

25. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Carbohyd Polym 103:119-125. Crossref

26. Liu P, Zhu C, Mathe A (2019) J Hazard Mater 371:484-493. Crossref

27. Compton OC, Jain B, Dikin DA, et al (2011) ACS Nano 5:4380-4391. Crossref

28. French AD (2014) Cellulose 21:885-896. Crossref
How to Cite
Akatan, K., Kuanyshbekov, T., Kabdrakhmanova, S., Imasheva, A., Battalova, A., Abylkalykova, R., Nasyrova, A., & Ibraeva, Z. (2021). Synthesis of nanocomposite material through modification of graphene oxide by nanocellulose. Chemical Bulletin of Kazakh National University, 102(3), 14-20.