Hydrothermal synthesis of monostructured LaPO4: morphology and structure

Keywords: hydrothermal synthesis, lanthanum phosphate, nanomaterials, crystal structure

Abstract

The application field of materials based on lanthanum orthophosphate (LaPO4) including nanomaterials, has been permanently extending recently. The high level of mechanical properties and the compatibility with numerous oxides make it possible to consider the possibility of using lanthanum orthophosphate as a composite material for construction purposes. This application is particularly promising when nanoparticles with quasi-1D morphology (nanorods) are used. The high isomorphic capacity of the LaPO4-based phase for alkaline-earth ions and ions of lanthanides and actinides, high chemical stability, and high radiation hardness make promising the application of this compound as a matrix for immobilization of radioactive wastes.

The possibility of obtaining lanthanum phosphate (LaPO4) by the hydrothermal method is considered in the work. Effects of pH, temperature and time of processing of hydrothermal synthesis on the morphology and structure of monostructured lanthanum phosphate are studied. It has been established that, with the increase of pH, the morphology of phosphate changed, the size of the crystallites increased, while the crystal structure changed from hexagonal to monoclinic.

References

1 Hikichi Y, Nomura T (1987) J Am Ceram Soc 70:252-253. Crossref

2 Ananthapadmanabhan PV, Sreekumar KP, Thiyagarajan TK et al (2009) Mater Chem Phys 113:417-421. Crossref

3 Gavrichev KS, Ryumin MA, Tyurin AV et al (2010) J Therm Anal Calorim 102:809-811. Crossref

4 Bryukhanova KI, Nikiforova GE, Gavrichev KS (2016) Nanosystems: Physics, Chemistry, Mathematics 7:451-458. Crossref

5 Ronda CR (1997) J Lumin 72:74-49. Crossref

6 Rambabu U, Amalnerkar DP, Kale BB, Buddhuduc S (2001) Mater Chem Phys 71:1-6. Crossref

7 Rambabu U, Amalnerkar DP, Kale BB, Buddhuduc S (2003) Mater Chem Phys 78:160-169. Crossref

8 Kang YC, Kim EJ, Lee DY, Park HD (2002) J Alloy Compd 347:266-270. Crossref

9 Lenggoro IW, Xia B, Mizushima H, Okuyama K, Kijima N (2001) Mater Lett 50:92-96. Crossref

10 Buddhudu S, Kam CH, Ng SL, Lam YL, Ooi BS, Zhou Y, Wong KS, Rambabu U (2000) Mater Sci Eng B-Adv 72:27-30. Crossref

11 Yu L, Song H, Lu S, Liu Z, Yang L, Kong X (2004) J Phys Chem B 108:16697-16702. Crossref

12 Kenges KM, Proskurina OV, Danilovich DP, Aldabergenov MK, Gusarov VV (2017) Russ J Appl Chem+ 90:1047-1053. Crossref

13 Yang P, Quan Z, Li C, Hou Z, Wang W, Lin J (2009) J Solid State Chem 182:1045-1054. Crossref

14 Yu C, Yu M, Li C, Liu X, Yang J, Yang P, Lin J (2009) J Solid State Chem 182:339-347. Crossref

15 Wang R, Pan W, Chen J, Fang M, Meng J (2002) Mater Lett 57:822-827. Crossref

16 Yao WT, Yu SH (2007) Int J Nanotechnol 4:129-162. Crossref

17 Ruigang W, Wei P, Jian C, Minghao F, Zhenzhu C, Yongming L (2003) Mater Chem Phys 79:30-36. Crossref

18 Kijkowska R (2003) J Mater Sci 38:229-233. Crossref

19 Boakye EE, Mogilevsky P, Hay RS (2005) J Am Ceram Soc 88:2740-46. Crossref

20 Gavrichev KS, Ryumin MA, Tyurin AV, Khoroshilov AV, Mezentseva LP et al (2010) J Therm Anal Calorim 102:809-811. https://doi.org/10.1007/s10973-010-0866-x ">Crossref

21 Li L, Jiang W, Pan H, Xu X, Tang Y et al (2007) J Phys Chem 111:4111-15. Crossref

22 Osipov AV, Mezentseva LP, Drozdova IA, Kuchaeva SK, Ugolkov VL, Gusarov VV (2007) Glass Phys Chem+ 33:169-173. Crossref

23 Osipov AV, Mezentseva LP, Drozdova IA, Kuchaeva SK, Ugolkov VL, Gusarov VV (2009) Glass Phys Chem+ 35:431-435. Crossref

24 Mooney RCL (1950) Acta Crystallogr 3:337-340. Crossref

25 Bryukhanova KI, Nikiforova GE, Gavrichev KS (2016) Nanosystems: physics, chemistry, mathematics 7:451-458. Crossref

26 Almjasheva OV, Denisova TA (2017) Russ J Gen Chem 87:1-7. Crossref

27 Almjasheva OV (2015) Nanosystems: Physics, Chemistry, Mathematics 6: 697-703. Crossref

28 Mullica DF, Milligan WO, Grossie DA, Beall GW, Boatner LA (1984) Inorg Chim Acta 95:231-236. Crossref
Published
2018-09-29
How to Cite
Kenges, K., Aldabergenov, M., Proskurina, O., & Gusarov, V. (2018). Hydrothermal synthesis of monostructured LaPO4: morphology and structure. Chemical Bulletin of Kazakh National University, 90(3), 12-19. https://doi.org/https://doi.org/10.15328/cb1015