Investigation of effect of template geometry on the crystal structure of Ni nanotubes

  • Gulnar Kalkabay Nazarbayev University, Astana
  • Artem Leonidovich Kozlovskiy Institute of Nuclear Physics, Almaty
  • Dmitry Igorevich Shlimas Institute of Nuclear Physics, Almaty
  • Milan Abasovna Ibragimova Institute of Nuclear Physics, Almaty
  • Maxim Vladimirovich Zdorovets Ural Federal University named after the first President of Russia B.N.Yeltsin, Ekaterinburg
  • Daryn Boranbaevich Borgekov Ural Federal University named after the first President of Russia B.N.Yeltsin, Ekaterinburg
  • Alexander Vasilyevich Tikhonov Nazarbayev University, Astana

Abstract

Modifications of geometric characteristics and structural properties of Ni nanotubes obtained by template synthesis were considered in this research study. Ion-track polyethylene membranes with pores diameters in the range from 180 to 380 nm were used as templates. Methods of scanning and transmission electron microscopy, energy dispersive and X-ray analysis were used to find influence of the geometrical properties of templates on structure, phase and elemental composition. X-ray analysis showed polycrystalline FCC-structure of nanotubes with crystal lattice parameters different from the standard values, indicating the presence of microstresses in the structure and microdistortions of lattice. We have made a hypothesis of the effect of template parameters on the crystal structure. With the increase of pores diameter, a predominance tendency of traversal of NT axis growth to longitudinal appeared, which could be explained by the increase of the deposited atoms quality. In this case, a tangential crystallites growth dominates over the growth in the normal direction due to layer-by-layer growth process.

Author Biographies

Gulnar Kalkabay, Nazarbayev University, Astana
School of Engineering
Maxim Vladimirovich Zdorovets, Ural Federal University named after the first President of Russia B.N.Yeltsin, Ekaterinburg

NRNU MEPhI, Moscow

Daryn Boranbaevich Borgekov, Ural Federal University named after the first President of Russia B.N.Yeltsin, Ekaterinburg
NRNU MEPhI, Moscow
Alexander Vasilyevich Tikhonov, Nazarbayev University, Astana
School of Science and Technology

References

1      Goldberger J, He R, Zhang Y (2003) Nature 422:599-602. http://dx.doi.org/10.1038/nature01551

2      Hulteen JC, Martin CR (1997) J Mater Chem 7:1075-1087. http://dx.doi.org/10.1039/A700027H

3      Lee JH, Kong YM, Kwon Y (2017) Journal of Nanoelectronics and Optoelectronics 12:321-325. https://doi.org/10.1166/jno.2017.1954

4      Matur UC, Baydogan N (2017) Journal of Nanoelectronics and Optoelectronics 4:352-358. https://doi.org/10.1166/no.2017.2023

5      Pei Z, Zhu M, Huang Y, Huang Y, Xue Q, Geng H, Zhi C (2016) Nano Energy 20:254-263. http://dx.doi.org/10.1016/j.nanoen.2015.12.025

6      Cao S, Tao FF, Tang Y, Li Y, Yu J (2016) Chem Soc Rev 45:4747-4765. https://doi.org/10.1039/C6CS00094K

7      Bucak S, Yavuztürk B, Sezer AD (2012)  Recent Advances in Novel Drug Carrier Systems 2:165-200. https://doi.org/10.5772/52115

8      Sanchez-Castillo MA, Couto C, Kim WB (2004) Angew Chem Int Edit 43:1140-1142. https://doi.org/10.1002/anie.200353238

9      Kros A, Nolte RJM, Sommerdijk Nico AJM (2002) Adv Mater 14:1779-1782. http://dx.doi.org/10.1002/1521-4095(20021203)14:23%3C1779::AID-ADMA1779%3E3.0.CO;2-T

10  Alonso F (2007) Tetrahedron. 63:93-102. http://dx.doi.org/10.1016/j.tet.2006.10.043

11  Kalska-Szostko B, Orzechowska E, Wykowska U (2013) Colloid Surface B 111:509–-516. https://dx.doi.org/10.1016/j.colsurfb.2013.05.033

12  Zdorovets M, Ivanov I, Koloberdin M (2014) Accelerator complex based on DC-60 cyclotron. Materials of 24th Russian Particle Accelerator Conference, RuPAC–2014, Obninsk, Russia. P.287-289. http://epaper.kek.jp/rupac2014/papers/thca01

13  Yoo B, Xiao F, Bozhilov KN (20067) Adv Mater 19:296-299. http://dx.doi.org/10.1002/adma.200600606

14  Kozlovskiy AL, Meirimova TYu, Shlimas DI et al (2015) Chemical Bulletin of Kazakh National University 4:40-48. http://dx.doi.org/10.15328/cb670 

15  Hanaoka TA, Kreibig U, Neuendorf R (1998) Appl Organomet Chem 12:367-373. http://dx.doi.org/10.1002/(SICI)1099-0739(199805)12:5<367::AID-AOC732>3.0.CO;2-Y

16  Sehayek T, Lahav M, Popovitz-Biro R, Vaskevich A (2005) Chem Mater 17:374337-48. http://dx.doi.org/10.1021/cm0501057

17  Haehnel V, Fähler S, Schaaf P, Miglierini M, Mickel C, Schultz L (2010)  Acta Mater 58:2330-2337. http://dx.doi.org/10.1016/j.actamat.2009.12.019

18  Sartowska BA, Orelovitch OL, Presz A, Apel PYu (2012) Nukleonika 57:575-579.

19  Molokanova LG, Nechaev AN, Apel PYu (2014) Colloid J 76:170-175. http://dx.doi.org/10.1134/S1061933X14020045

20  Bond AM, Luscombe D, Oldham KB (1988) J Electroanal Chem 245:71-104. http://dx.doi.org/10.1016/0022-0728(88)80060-3

21  Bond AM, Fleischmann M, Robinson J (1984) J Electroanal Chem 168:299-312. http://dx.doi.org/10.1016/0368-1874(84)87106-3

22  Shao P, JI G, Chen P (2005) J Membrane Sci 255:1-11. http://dx.doi.org/10.1016/j.memsci.2005.01.018

Published
2016-12-30
How to Cite
KALKABAY, Gulnar et al. Investigation of effect of template geometry on the crystal structure of Ni nanotubes. Chemical Bulletin of Kazakh National University, [S.l.], n. 3-4, p. 34-42, dec. 2016. ISSN 2312-7554. Available at: <http://bulletin.chemistry.kz/index.php/kaznu/article/view/792>. Date accessed: 24 july 2017. doi: https://doi.org/10.15328/cb792.
Section
Physical Chemistry and Electrochemistry

Keywords

rack membranes; electrochemical deposition; nanotubes; nanowires