A new electrocatalytic systems based on bisorbents from rice husk

  • Bazarbai Alibayevich Serikbaev al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Duisek Haisagalievich Kamysbaev al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Galina Sergeevna Arbuz al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Dinara Alimbai al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Akbayan Arin al-Farabi Kazakh National University, Almaty, Kazakhstan
Keywords: rice husk, bisorbent, SiO2/C, Co-Mо-composites, voltammetry

Abstract

The article studies results of carbon-based and amorphous silicon dioxide bisorbents (BS) synthesis. Data of the sorption characteristics of new bases for producing modified systems to use these in electrocatalysis are presented. Forpreparation SiO2/C baseas the raw material rice husk (RH) was chosen. A series of experiments was performed to optimize parameters of the RHcarbonization byvarying oftemperature and time process. The material obtained from the RH thermal destruction products was modified by the heteropoly compound (NH4)3[Co3O6Mo6O18H6] · nH2O and thermally reduced by hydrogen. The registration of the voltammetric curves was carried out at pH = 6,22 in the background electrolyte of 0,1 M Na2SO4 and pH = 4,45 in 0,1 M KC8H5O4.The potential ranges were -1,2В ÷ 1,2 V and -1,0 V ÷ 0,2 respectively. The mechanism of the electrochemical processes on these materials has been studied. It is shown that the obtained composite electrode materials exhibitelectrochemical activity in the investigated potential regions and they are characterized by the stability of redox properties. The main ways of using the obtained composites are outlined.

References

1 Eletskiy PM (2009) Synthesis and investigation of carbon-silica nanocomposites, meso- and microporous carbon materials from high-ash biomass [Sintez i issledovanie uglerod-kremnezemnyih nanokompozitov, mezo- imikroporistyih uglerodnyih materialov iz vyisokozolnoy biomassyi]. Dissertation for Candidate of Chemical Science Degree, G.K. Boreskov Institute of Catalysis of SB RAS, Novosibirsk, Russia. (In Russian)

2 Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT (2003) Appl Phys Lett 82:2694-2696. Crossref

3 Messaoudi Y, Azizi A, Fenineche N, Schmerber G, Dinia A (2013) Sensor Lett 11:1622-1626. Crossref

4 Kublanovsky VS, Yapontseva YuS (2014) Electrocatalysis 5:372-378. Crossref

5 Sun T, Wu Q, Che R, Bu Y, Jiang Y, Li Y, Yang L, Wang X, Hu Z (2015) ACS Catal 5:1857-1862. Crossref

6 Li Y, Ge X, Wang L, Liu J, Wang Y, Feng L (2017) RSC Adv 7:11568-1157. Crossref

7 Guptaa S, Patela N, Fernandesa R, Hanchatea S, Miotellob A, Kotharia DC (2017) Electrochim Acta 232:64-71. Crossref

8 Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y (2013) Electrochim Acta 106:258-263. Crossref

9 Volkov AI, Zharskiy IM (2005) Great chemical handbook [Bolshoy himicheskiy spravochnik]. Sovremennaya shkola, Minsk, Russia. (In Russian)

10 (1993) GOST 4453-74. Active clarifying wood powder charcoal. Technical conditions. Section 4.4. Determination of adsorption activity by the indicator methylene blue [Ugol aktivnyiy osvetlyayuschiy drevesnyiy poroshkoobraznyiy. Tehnicheskie usloviya. P. 4.4. Opredelenie adsorbtsionnoy aktivnosti po indikatoru metilenovomu golubomu ili metilenovomu sinemu]. Izdatelstvo standartov, Mosckow, Russia. (In Russian)

11 (1993) GOST 6217-74. Charcoal crushed. Technical conditions. A.4.4. Method for determination of sorption capacity by iodine. A.4.5. Determination of strength. [Ugol drevesnyiy droblennyiy. Tehnicheskie usloviya. P.4.4. Metod opredeleniya sorbtsionnoy emkosti po yodu. P.4.5. Opredelenie prochnosti]. Izdatelstvo standartov, Mosckow, Russia. (In Russian)

12 Vyacheslavov AS, Pomerantseva EA (2006) Measurement of surface area and porosity by capillary nitrogen condensation. Methodical technique [Izmerenie ploschadi poverhnosti I poristosti metodom kapillyarnoy kondensatsii azota. Metodicheskaya razrabotka]. MGU, Moscow, Russia. (In Russian)

13 Kuznetsov VV (2015) Russ J Electrochem+ 8:846-855. (In Russian)

14 Hramenkova AV (2014) Preparation of composite and polymer-immobilized catalytic active oxide coatings by the nonstationary method of electrolysis [Poluchenie kompozitsionnyih i polimer-immobilizovannyih kataliticheski aktivnyih oksidnyih pokryitiy metodom nestatsionarnog oelektroliza]. Dissertation for Candidate of Chemical Science Degree, M.I. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia. P. 43-54. (In Russian)

15 Kuznetsov VV (2008) Russ J Electrochem+ 9:1449-1457. (In Russian)

16 Pshenichkina TV (2010) Obtaining a cobalt-molybdenum alloy by the electrochemical method and its properties [Poluchenie splava kobolt-molibden elektrohimicheskim metodom i ego svoystva]. Dissertation for Candidate of Chemical Science Degree, D.I. Mendeleev Russian Chemical-Technological University, Moscow, Russia. P. 24-27. (In Russian)

17 Kalinkina AA (2009) Electrochemical synthesis of electrocatalysts using molybdenum compounds [Elektrohimicheskiy sintez elektrokatalizatorov s ispolzovaniem soedineniy molibdena]. Dissertation for Candidate of Chemical Science Degree, D.I. Mendeleev Russian Chemical-Technological University, Moscow, Russia. P. 100–106. (In Russian)
Published
2017-10-05
How to Cite
Serikbaev, B., Kamysbaev, D., Arbuz, G., Alimbai, D., & Arin, A. (2017). A new electrocatalytic systems based on bisorbents from rice husk. Chemical Bulletin of Kazakh National University, 86(3), 20-25. https://doi.org/https://doi.org/10.15328/cb820
Section
Physical Chemistry and Electrochemistry