Sorption sensitivity of basidiomycete mycelium drugs to vapors of ammonia according to the analysis of acoustic wave propagation

  • O. Civileva The Russian Academy of Sciences' Institute of Biochemistry and Physiology of Plants and Microorganisms (IBPPM RAS)
  • A. Pankratov Saratov Chernyshevsky State University
  • I. Kuznetsova Saratov Branch of Institute of Radio-engineering and Electronics by the Russian Academy of Science
  • B. Zaitsev Saratov Branch of Institute of Radio-engineering and Electronics by the Russian Academy of Science
  • A. Shihabudinov Saratov Branch of Institute of Radio-engineering and Electronics by the Russian Academy of Science
  • V. Korolovich Taras Shevchenko National University of Kiev
Keywords: sorption sensitivity, acoustic waves, mushroom isolate, mycelial extract

Abstract

Data of sensitivity of sorption study deep culture isolates of higher shiitake mushroom used as a modifier acoustic biosensor device are presented in paper. The conditions for preparing biomodifier ; leading to a higher sensitivity of the sensor to an aqueous solution of ammonia were determined. Sensitive elements of piezoelectric resonators were obtained on the basis of mycelial extracts. Sampling of fungal isolates on the criteria values change in resonant frequency and nature of relaxation was conducted. Pure component of resonator response caused by a film of mycelial extract was obtained using fitting simulation procedure . Values of weight of films; modulus of elasticity and viscosity were obtained. It is recommended to use a film shiitake mushroom mycelium extract; aged 14 days; cultivated on synthetic culture medium supplemented with indolyl-3-acetic acid (0;2 mg/L); and extracted with ethanol to determine whether the presence of gaseous ammonia. 

References

1. Rembeza S.I., Shmatova Y.V., Svistova T.V., Rembeza E.S., Koshelev N.N. Electrical properties and gas sensor nanocomposite SnO2 with multi-walled carbon nanotubes [Jelektricheskie i gazosensornye svojstva nanokompozita na osnove SnO2 s mnogostennymi uglerodnymi nanotrubkami]. Fizika i tehnika poluprovodnikov – Semiconductors, 2012. 46(9). P. 1213-1216.

2. Nadda M.Z., Petrov V.V., Shihabudinov A.M. Investigation of the properties of the nanocomposite material for highly sensitive sensors of nitrogen dioxide [Issledovanie svojstv nanokompozitnogo materiala dlja vysokochuvstvitel’nyh sensorov dioksida azota]. Inzhenernyj vestnik Dona – Engineering Gazette Don, 2012. 4, 2. Available at: http://ivdon.ru/magazine/archive/n4p2y2012/1349.

3. Silina Y.E. Determination of volatile components of building materials in indoor air using a mass-metric converters [Opredelenie letuchih komponentov stroitel’nyh materialov v vozduhe pomeshhenij s primeneniem mass-metricheskih preobrazovatelej]: Author’s abstract Saratov: Saratov. Reg. University, 2005. P. 24.

4. Makarenko A.A. Biosensors for the detection of aromatic sulfonic acid and phenolic compounds on the basis of bacterial genera Comamonas and Pseudomonas - destructors p-toluene and phenol [Biosensory dlja detekcii sul’foaromaticheskih i fenol’nyh soedinenij na osnove bakterij rodov Comamonas i Pseudomonas - destruktorov p-toluolsul’fonata i fenola]: Author’s abstract. Saratov IBPPM RAS, 2007. P. 26.

5. Andle J.C., Vetelino J.F. Acoustic Wave Biosensors. Sensors and Actuators A: Physical, 1994. 44, P. 167-176.

6. Calabrese G.S., Wohtjen H., Roy M.K. Surface Acoustic Wave Devices As Chemical Sensors in Liquids: Evidence Disputing the Importance of Rayleigh Wave Propagation. Anal. Chem. , 1987, 59. P. 833-837.

7. King W.H. The Use of Resonating Devices to Make Small Mass Measurements . Bull. N.Y. Acad. Med., 1972. 48. P. 459-467.

8. Zaitsev B.D., Kuznetsova I.E., Borodin I.A. Influence of boundary conditions for the electric field on the characteristics of surface acoustic waves propagating in potassium niobate [Vlijanie granichnyh uslovij dlja jelektricheskogo polja na harakteristiki poverhnostnyh akusticheskih voln, rasprostranjajushhihsja v niobate kalija]. Akustich. Zhurn – Acoustic . journal,- 2004, 50(4). P. 462-468.

9. Sharapov V.M., Musienko M.P., Sharapova E.V. Piezoelectric sensors [P’ezojelektricheskie datchiki]. Moscow: Technosphere, 2006. P. 628.

10. Pat. 2346051 Russian Federation. IPC C 12 Q 1/00 (2006/01) G 01 N 27/00 (2006/01). Biomodifier for determining phenol and its derivatives [Biomodifikator dlja opredelenija fenola i ego proizvodnyh] . OM Tsivileva, VE Nikitina, TA Kuchmenko, JE Silina, AN Pankratov. Appl. 26.02.2007, № 2007106772/13, publ. 10.02.2009. 7 p. Inventions. Utility models. 2009. Bull. Number 4 (Part III). - P. 837.

11. Ho M. Applications of Piezoelectric Quartz Crystal Microbalances. Editors: C. Lu, A.W. Czanderna. Amsterdam: Elsevier/ North Holland, 1984.

12. Tsivileva O.M., Loshchinina E.A., Makarov O.E., Nikitina V.E. Auxin Synthesis by the Higher Fungus Lentinus edodes (Berk.) Sing in the Presence of Low Concentrations of Indole Compounds. Applied Biochemistry and Microbiology, 2012, 48. P. 280-289.

13. Ghose A.K., Crippen G.M. Atomic Physicochemical Parameters for Three-Dimensional-Structure-Directed Quantitative Structure - Activity Relationships. 2. Modeling Disperse and Hydrophobic Interactions. J. Chem. Inf. and Comput. Sci., 1987. 27(1). P. 21-35.

14. Viswanadhan V.N., Ghose A.K., Revankar G.N., Robins R.K. Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure - Activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Nucleoside Antibiotics . J. Chem. Inf. and Comput. Sci., 1989. 29(3). P. 163-172.

15. Ghose A.K., Crippen G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure - Activity Relationships. I. Partition Coefficients As a Measure of Hydrophobicity. J. Comput. Chem., 1986, 7(4). P. 565-577.

16. Ghose A.K., Pritchett A., Crippen G.M. Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure - Activity Relationships III: Modeling Hydrophobic Interactions . J. Comput. Chem., 1988, 99(1). P. 80-90.

17. Pankratov A.N. Azo-Coupling Reactions Used in Analytical Chemistry: The Role of Reactants, Intermediates, and Aqueous Medium. Helvetica Chim. Acta, 2004, 87(6). P. 1561-1573.

18. Pankratov A.N. Analytical coupling reaction: a perspective from quantum chemistry [Analiticheskie reakcii azosochetanija: vzgljad s tochki zrenija kvantovoj himii]. Zhurn. analyt. Himii – Journ. Anal. Chemistry. 2005. 60 (10). P. 1036-1046.

19. Kuznetsova I.E., Ulzutuev A.N., Zaitsev B.D., Ushakov N.M., Kosobudsky I.D. Acoustic characteristics of polymeric nanocomposite films [Akusticheskie harakteristiki polimernyh nanokompozitnyh plenok]. Proceedings of the XVIII Session of the Russian Academy of Sciences. September 11-15, 2006, Taganrog. 1. P. 15-19.

20. Zaitsev B.D., Joshi S.G., Dhuru V.B. Elastic Properties of Dentin Bonding Agents Using Bulk Acoustic Waves [Uprugie volny v tverdyh telah]. Proceedings of IEEE Ultrasonic Symposium. 1997. 1 P. 623-626.

21. Delesan E., Royer D. Elastic waves in solids. Moscow: Nauka, 1982. P. 424.

22. Zelenka I. Piezoelectric resonators on bulk and surface acoustic waves [P’ezojelektricheskie rezonatory na obemnyh  i poverhnostnyh akusticheskih volnah]. Moscow: Mir, 1990. P. 583.

Published
2013-09-14
How to Cite
Civileva, O., Pankratov, A., Kuznetsova, I., Zaitsev, B., Shihabudinov, A., & Korolovich, V. (2013). Sorption sensitivity of basidiomycete mycelium drugs to vapors of ammonia according to the analysis of acoustic wave propagation. Chemical Bulletin of Kazakh National University, 72(4), 143-151. https://doi.org/https://doi.org/10.15328/chemb_2013_4143-151