New method for the synthesis of oxonium derivatives of closo-borate anions [BnHn]2-

  • Elena S. Boyarinova MIREA – Russian Technological University, Moscow, Russia
  • Danila V. Filin MIREA – Russian Technological University, Moscow, Russia
  • Elizaveta A. Yeshtukova-Shcheglova MIREA – Russian Technological University, Moscow, Russia http://orcid.org/0000-0002-3729-4466
  • Iliya E. Sokolov Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
  • Artyom A. Medvedev Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Moscow, Russi
  • Artemiy I. Nichugovskii MIREA – Russian Technological University, Moscow, Russia https://orcid.org/0000-0003-2523-2054
  • Evgeniy Yu. Matveev MIREA – Russian Technological University, Moscow, Russia https://orcid.org/0000-0003-0478-0705
Keywords: boron cluster anions, closo-decaborate anion, closo-dodecaborate anion, synthesis of substituted derivatives, EINS, opening of cyclic substituents

Abstract

This work investigates the reaction of tetrabutylammonium salts of [B10H10]2- and [B12H12]2- anions with tetrahydrofuran, 1,4-dioxane, and tetrahydropyran in the presence of aqueous H[BF4] and H2[SiF6] solutions. It is shown that these reactions yield mono-substituted derivatives of the closo-decaborate anion ([2-B10H9O(CH2)4]-, [2-B10H9O(CH2)4О]-, [2-B10H9O(CH2)5]-) and closo-dodecaborate anion ([B12H11O(CH2)4]-, [B12H11O(CH2)4О]-, [B12H11O(CH2)5]-) in high yields. It was proven that in the case of the [B10H10]2- anion, the reaction proceeds regioselectively, leading specifically to products with substituents in the equatorial belt of the boron cluster. The closo-dodecaborate anion derivative with an exo-polyhedral tetrahydropyran substituent was further functionalized by reaction with potassium cyanide in DMF. Studies showed that this reaction results in the opening of the cyclic substituent, forming a derivative containing a pendant cyano group attached to the boron cluster via a pentamethylene spacer. This compound can be further modified at the terminal group to obtain biologically active boron-containing derivatives, promising for use in ¹⁰B-neutron capture therapy (BNCT) of malignant tumors, as well as antimicrobial and antiviral therapy.
The structures of all obtained derivatives were confirmed using a comprehensive set of modern physical and physicochemical analytical methods (elemental analysis, IR spectroscopy, multinuclear NMR spectroscopy, ESI mass spectrometry).

References

1 Kuznetsov NT (2002) Russ J Inorg Chem 47:S68-S104.

2 Aihara J (1978) J Am Chem Soc 100(11):3339-3342. https://doi.org/10.1021/ja00479a015

3 Jørgensen M, Hansen BR, Lee YS, Cho YW, Jensen TR (2019) J Phys Chem C 123(33):20160–20166. https://doi.org/10.1021/acs.jpcc.9b06084

4 Wu JF, Zhang R, Fu QF, Zhang JS, Zhou XY, Gao P, Guo X (2021) Adv Funct Mater 31(13):2008165. https://doi.org/10.1002/adfm.202008165

5 Yan J, Yang W, Zhang Q, Yan Y (2020) ChemComm. 56:11720–11734. https://doi.org/10.1039/D0CC04709K

6 Kapuściński S, Hietsoi O, Pietrzak A, Friedli AC, Kaszyński P (2022) ChemComm 58:851–854. https://doi.org/10.1039/D1CC06485A

7 Barton JL, Wixtrom AI, Kowalski JA, Qian EA, Jung D, et al. (2019) ACS Appl Energy Mater 2(7):4907-4913. https://doi.org/10.1021/acsaem.9b00610

8 Jacob L, Rzeszotarska E, Koyioni M, Jakubowski R, Pociecha D, et al. (2022) Chem Mater 34(14):6476-6491. https://doi.org/10.1021/acs.chemmater.2c01165

9 Suzuki M (2020) Int J Clin Oncol 25:43-50. https://doi.org/10.1007/s10147-019-01480-4

10 Zharkov DO, Yudkina AV, Riesebeck T, Loshchenova PS, Mostovich EA, Dianov GL (2021) Am J Cancer Res 11(10):4668.

11 Ali F, Hosmane N, Zhu Y (2020) Molecules 25(4):828. https://doi.org/10.3390/molecules25040828

12 Garaev TM, Yudin II, Breslav NV, Grebennikova TV, Matveev EYu, et al. (2024) Molecules 29(24):5886. https://doi.org/10.3390/molecules29245886

13 Sivaev IB, Bregadze VI, Kuznetsov NT (2002) Russ Chem Bull 51(8):1362-1374. https://doi.org/10.1023/A:1020942418765

14 Matveev EYu, Garaev TM, Novikov SS, Nichugovskii AI, Sokolov IE, et al. (2023) Russ J Inorg Chem 68(6):670–677. https://doi.org/10.1134/S0036023623600533

15 Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Zhang MR (2020) Coord Chem Rev 405:213139. https://doi.org/10.1016/j.ccr.2019.213139

16 Fink K, Uchman M (2021) Coord Chem Rev 431:213684. https://doi.org/10.1016/j.ccr.2020.213684

17 Barba-Bon A, Salluce G, Lostalé-Seijo I, Assaf K, Hennig A, et al. (2022) Nature 603(7902):637-642. https://doi.org/10.1038/s41586-022-04413-w

18 Cebula J, Fink K, Boratyński J, Goszczyński TM (2023) Coord Chem Rev 477:214940. https://doi.org/10.1016/j.ccr.2022.214940

19 Sivaev IB, Bregadze VI, Sjöberg S (2002) Collect Czech Chem Commun 67(6):679-727. https://doi.org/10.1135/cccc20020679

20 Sivaev IB, Prikaznov AV, Naoufal D (2010) Collect Czech Chem Commun 75(11):1149-1199. https://doi.org/10.1135/cccc2010054

21 Al-Joumhawy M, Cendoya P, Shmalko A, Marei T, Gabel D (2021) J Organomet Chem 949:121967. https://doi.org/10.1016/j.jorganchem.2021.121967

22 Laila Z, Ghaida F, Anwar S, Yazbeck O, Jahjah R, et al. (2015) Main Group Chem 14(4):301-312. https://doi.org/10.3233/MGC-150173

23 Zhizhin K, Mustyatsa VN, Malinina EA, Polyakova IN, Kuznetsov NT (2005) Russ J Inorg Chem 50(1):29-34.

24 Laila Z, Yazbeck O, Ghaida F, Diab M, Anwar S, et al. (2020) J Organomet Chem 910:121132. https://doi.org/10.1016/j.jorganchem.2020.121132

25 Matveev EY, Kubasov AS, Razgonyaeva GA, et al. (2015) Russ J Inorg Chem 60(7):776-785. https://doi.org/10.1134/S0036023615070104

26 Laskova J, Ananiev I, Kosenko I, et al. (2022) Dalton Trans 51(8):3051-3059. https://doi.org/10.1039/D1DT04174F

27 Nelyubin AV, Klyukin IN, Novikov AS, et al. (2022) Inorganics 10(11):196. https://doi.org/10.3390/inorganics10110196

28 Nelyubin AV, Selivanov NA, Bykov AY, et al. (2021) Int J Mol Sci 22(24):13391. https://doi.org/10.3390/ijms222413391

29 Zhdanov AP, Lisovsky MV, Goeva LV, Razgonyaeva GA, Polyakova IN, et al. (2009) Russ Chem Bull 58:1694-1700. https://doi.org/10.1007/s11172-009-0234-9

30 Gabel D, Moller D, Harfst S, et al. (1993) Inorg Chem 32(11):2276–2278. https://doi.org/10.1021/ic00063a014

31 Kubasov AS, Turyshev ES, Novikov IV, et al. (2021) Polyhedron 206:115347. https://doi.org/10.1016/j.poly.2021.115347

32 Kubasov AS, Matveev EY, Turyshev ES, et al. (2018) Inorganica Chim Acta. 477:277-283. https://doi.org/10.1016/j.ica.2018.03.013

33 Peymann T, Gabel D (1997) Inorg Chem 36(22):5138-5139. https://doi.org/10.1021/ic970647t

34 Sivaev IB, Semioshkin AA, Brellochs B, Bregadze VI (2000) Polyhedron 19(6):627-632. https://doi.org/10.1016/S0277-5387(00)00293-X

35 Serdyukov A, Kosenko I, Druzina A, et al. (2021) Organomet Chem 946:121905. https://doi.org/10.1016/j.jorganchem.2021.121905

36 Imperio D, Muz B, Azab AK, et al. (2019) Eur J Org Chem 2019(43):7228-7232. https://doi.org/10.1002/ejoc.201901412

37 Semioshkin A, Laskova J, Ilinova A, Bregadze V, Lesnikowski ZJ (2011) J Organomet Chem 696(2):539-543. https://doi.org/10.1016/j.jorganchem.2010.09.011

38 Druzina AA, Zhidkova OB, Kosenko ID (2020) Russ Chem Bull 69(6):1080-1084. https://doi.org/10.1007/s11172-020-2870-z

39 Semioshkin A, Nizhnik E, Godovikov I, Starikova Z, Bregadze V (2007) J Organomet Chem 692(19):4020-4028. https://doi.org/10.1016/j.jorganchem.2007.06.001

40 Laskova J, Kozlova A, Białek-Pietras M, Paradowska E, Bregadze V, Semioshkin A (2016) J Organomet Chem 807:29-35. https://doi.org/10.1016/j.jorganchem.2016.02.009

41 Matveev EYu, Dontsova OS, Avdeeva VV, Kubasov AS, Zhdanov AP, et al. (2023) Molecules 28(24):8073. https://doi.org/10.3390/molecules28248073

42 Matveev EYu, Kubasov AS, Nichugovskii AI, Avdeeva VV, Zhizhin KYu, Kuznetsov NT (2023) Russ J Inorg Chem 68(6):644–656. https://doi.org/10.1134/S0036023623600545

43 Matveev EYu, Akimov SS, Kubasov AS, Retivov VM, Zhizhin KYu, Kuznetsov NT (2019) Russ J Inorg Chem 64(12):1513–1521. https://doi.org/10.1134/S003602361912009X

44 Matveev EY, Limarev IP, Nichugovskii AI, Bykov AY, Zhizhin KY, Kuznetsov NT (2019) Russ J Inorg Chem 64(8):977-983. https://doi.org/10.1134/S0036023619080084

45 Prikaznov AV, Sivaev IB, Petrovskii PV, Bragin VI, Kisin AV, Bregadze VV (2011) Polyhedron 30(9):1494-1501. https://doi.org/10.1016/j.poly.2011.02.055

46 Prikaznov AV, Semioshkin AA, Sivaev IB, Kisin AV, Bregadze VI (2011) Russ Chem Bull 60(12):2550-2554. https://doi.org/10.1007/s11172-011-0392-4

47 Becker GO et al. (1992) Organikum. Vol. 2. Trans. from German. Mir, Moscow, Russia. (In Russian)

48 Miller HC, Miller NE, Muetterties EL (1963) J Am Chem Soc 85(23):3885-3886. https://doi.org/10.1021/ja00906a033

49 Pretsch E, Clerc T, Seibl J, et al. (2013) Tables of spectral data for structure determination of organic compounds. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-22455-7
Published
2025-06-29
How to Cite
Boyarinova, E., Filin, D., Yeshtukova-Shcheglova, E., Sokolov, I., Medvedev, A., Nichugovskii, A., & Matveev, E. (2025). New method for the synthesis of oxonium derivatives of closo-borate anions [BnHn]2-. Chemical Bulletin of Kazakh National University, 115(2), In Press. https://doi.org/https://doi.org/10.15328/cb1425