Production Technology and Physicochemical Characteristics of Activated Carbon Derived from Industrial Waste

  • Sergei V. Nechipurenko Al-Farabi Kazakh National University, Almaty, Kazakhstan; National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0002-7463-1679
  • Dara Amankeldi Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Adilet Zh. Alikulov Al-Farabi Kazakh National University, Almaty, Kazakhstan; National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0003-0380-0612
  • Nazar A. Zabara Al-Farabi Kazakh National University, Almaty, Kazakhstan; ational Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0002-1346-7190
  • Bayana B. Ermukhambetova Al-Farabi Kazakh National University, Almaty, Kazakhstan; National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0003-4950-0367
  • Sergei A. Efremov Al-Farabi Kazakh National University, Almaty, Kazakhstan; National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0002-3542-4140
  • Grigoriy A. Mun Al-Farabi Kazakh National University, Almaty, Kazakhstan; National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan https://orcid.org/0000-0002-4984-7937
Keywords: carbon materials, activated carbon, sorption properties, activation, coke fines, structural characteristics

Abstract

This study examines the specific features of the production technology of granular activated carbon obtained from substandard fine-grained carbon fractions, which are by-products of the special coke industrial production at JSC «Shubarkol Komir.» A technological scheme was developed for producing activated carbon based on this industrial waste, including the methods and conditions for granulation, carbonization, and activation. The physicochemical properties and structural characteristics of the resulting target carbon materials were evaluated.
Granular and powdered activated carbons were produced from coke fines with the following composition: 60% coke fines, 35% binder, and 5% chemical activating agent. The temperature dependencies of the activation process were determined. Using adsorption-structural analysis methods, the structure of the activated carbon was studied, revealing a well-developed porous structure that includes mesopores with slit sizes ranging from 2 to 32 nm.

References

1 Chentsova LI (2012) Purification and processing of industrial emissions and waste: textbook. Stipend [Ochistka i pererabotka promyshlennyh vybrosov i othodov: ucheb. posobie] / LI Chentsova, EV Ignatova, SV Soboleva, VM Voronin. Krasnoyarsk, SibGTU. (In Russian)

2 Li H, Wang L, Shen L, Shen F (2012) Energy Policy 41:393-401. https://doi.org/10.1016/j.enpol.2011.10.061

3 Mukhin VM, Klushin VN (2012) Production and application of carbon adsorbents [Proizvodstvo i primenenie uglerodnyh adsorbentov]. RHTU, Moscow. (In Russian)

4 Kel’cev NV (1984) Fundamentals of adsorption technology [Osnovy adsorbcionnoi tekhniki]. Himiya, Moscow. (In Russain)

5 Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Adv Function Mater 30:1909265. https://doi.org/10.1002/adfm.201909265

6 Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Environ Chem Lett 18:393. https://doi.org/10.1007/s10311-019-00955-0

7 Tounsadi H, Khalidi A, Farnane M, Abdennouri M, Barka N (2016) Process Safety Environ Protect 102:710-723. https://doi.org/10.1016/j.psep.2016.05.017

8 Foo KY, Hameed BH (2012) Bioresource Technol 116:522-525. https://doi.org/10.1016/j.biortech.2012.03.123

9 Marsh H, Rodríguez-Reinoso F (2006) Activation Processes (Thermal or Physical). In Activated Carbon (Eds H Marsh, F Rodríguez-Reinoso, H Marsh, F RodríguezReinoso). Oxford. P. 243.

10 GOST 16188-70. Activated carbons. Method for determining the abrasion resistance of granules [Ugli aktivirovannye. Metod opredeleniya prochnosti granul na istiranie]. (In Russian)

11 GOST 16188-70. Sorbents. Method for determining the abrasion resistance [Sorbenty. Metod opredeleniya prochnosti pri istiranii]. (In Russian)

12 GOST 12596-67. Active coals. Determination of the mass fraction of ash [Ugli aktivnye. Opredelenie massovoi doli zoly]. (In Russian)

13 GOST 12597-67. Sorbents. Method for determining the mass fraction of water in activated carbons and catalysts based on them [Sorbenty. Metod opredeleniya massovoj doli vody v aktivnyh uglyah i katalizatorah na ih osnove]. (In Russian)

14 GOST 6382-2001. Solid mineral fuel. Method for determining the yield of volatile substances [Toplivo tverdoe mineral’noe. Metod opredeleniya vyhoda letuchih veshchestv]. (In Russian)

15 GOST 33618-2015. Activated carbon. The standard method for determining the iodine number [Ugol’ aktivirovannyj. Standartnyj metod opredeleniya jodnogo chisla]. (In Russian)

16 GOST 4453-74. Charcoal is an active lightening wood powder. Technical specifications [Ugol’ aktivnyj osvetlyayushchij drevesnyj poroshkoobraznyi. Tekhnicheskie usloviya]. (In Russian)

17 Brunauer S, Emmett PH, Teller E (1938) J. Amer. Chem. Soc. 60:309-319. https://doi.org/10.1021/ja01269a023

18 Echlin P (2009) Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. Springer Science + Business Media, LLC.

19 Kinle H, Bader E (1984) Activated carbons and their industrial applications [Aktivnye ugli i ih promyshlennoe primenenie]. Himiya, Moscow. (In Russian)

20 GOST 10200-2017. Coal, lignite and anthracite, bayonet, semi-finished products and products of coal processing. General technical conditions [Ugli kamennye, burye i antracit, shtyb, polufabrikaty i produkty pererabotki uglej. Obshchie tekhnicheskie usloviya]. (In Russian)

21 Härmas M, Palm R, Thomberg T, Härmas R, Koppel M, et al. (2020) J Appl Electrochem 50:15. https://doi.org/10.1007/s10800-019-01364-5

22 Mopoung S, Dejang N (2021) Sci Rep 11:13948. https://doi.org/10.1038/s41598-021-93249-x

23 Lin Y, Xu H, Gao Y, Zhang X (2023) Biomass Conv Bioref 13: 3785.

24 Sing KSW (1985) Pure Appl Chem 57:603-619. https://doi.org/10.1351/pac198557040603

25 Kumar KV, Gadipelli S, Wood B, Ramisetty KA, Stewart AA, et al. (2019) J Mater Chem A 7:10104-10137. https://doi.org/10.1039/C9TA00287A

26 Chen K, Zhang T, Chen X, He Y, Liang X (2018) Petrol Expl Devel 45:412-421. https://doi.org/10.1016/S1876-3804(18)30046-6

27 Wang Z, Cheng Y, Wang G, Ni G, Wang L (2022) Fuel 309:122120. https://doi.org/10.1016/j.fuel.2021.122120

28 Schlumberger C, Thommes M (2021) Adv Mater Interfaces 8:2002181. https://doi.org/10.1002/admi.202002181

29 Thommes M, Kaneko K, Neimark AV, et al. (2015) Pure and Applied Chemistry 87(9-10):1051-1069.

30 GOST 6217-74. Crushed active wood coal. Technical specifications [Ugol’ aktivnyj drevesnyj droblenyj. Tekhnicheskie usloviya]. (In Russian)

31 Baklanova ON, Plaksin GV, Drozdov VA (2004) Microporous carbon sorbents based on vegetable raw materials [Mikroporistye uglerodnye sorbenty na osnove rastitel’nogo syr’ya]. Rossijskij himicheskij zhurnal 48(3):89-94. (In Russian)
Published
2025-06-29
How to Cite
Nechipurenko, S., Amankeldi, D., Alikulov, A., Zabara, N., Ermukhambetova, B., Efremov, S., & Mun, G. (2025). Production Technology and Physicochemical Characteristics of Activated Carbon Derived from Industrial Waste. Chemical Bulletin of Kazakh National University, 115(2), In Press. https://doi.org/https://doi.org/10.15328/cb1421