Artificial protective coatings for lithium metal anode to improve its stability
Abstract
The use of lithium metal as an anode in lithium-metal batteries is desired due to its high capacity and highly negative potential but is still not achieved due to the high activity and consequent chemical and electrochemical instability of this metal. On contact with the electrolyte, a film (SEI) is formed on the lithium surface consisting of the electrolyte decomposition products. Typically, this film has a heterogeneous structure, making it unstable and it cracks during cycling, which leads to lithium local deposition in the form of outgrowths – dendrites. A short circuit can occur when the dendrites grow to the cathode, followed by a possible battery fire. To solve this problem, it was proposed to coat lithium anodes with artificial SEI with the desired properties: homogeneous structure, high ionic and low electronic conductivity, and mechanical and chemical stability. The main methods for applying such coatings are dipping, dripping, doctor blade smearing, chemical or electrochemical reaction with lithium, and techniques such as magnetron sputtering, atomic and molecular layer deposition, and plasma activation. In this review examples of artificial protective coatings of different nature on lithium, their structure and functional features are considered. The reasons for their enhancement of lithium-metal anode operation stability and the characteristics obtained as a result of anode protection by these films are also indicated. At comparison of various approaches to creation of artificial SEI the methodological problem on an estimation of their efficiency is revealed and the decision variant is offered.
References
2 Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Chem Rev 117:10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115
3 Ko J, Yoon YS (2019) Ceram Int 45:30–49. https://doi.org/10.1016/j.ceramint.2018.09.287
4 Xu R, Cheng XB, Yan C, Zhang XQ, Xiao Y, Zhao CZ, et al. (2019) Matter 1:317–344. https://doi.org/10.1016/j.matt.2019.05.016
5 He D, Lu J, He G, Chen H (2022) Front Chem 10:916132. https://doi.org/10.3389/fchem.2022.916132
6 Hou J, Yang M, Sun B, Wang G (2022) Batter Supercaps 5:202200231. https://doi.org/10.1002/batt.202200231
7 Zhuang G, Ross PN (2000) J Power Sources 89:143–148. https://doi.org/10.1016/S0378-7753(00)00422-5
8 Mauger A, Julien CM (2022) Inorganics 10:5. https://doi.org/10.3390/inorganics10010005
9 Guan J, Li N, Yu L (2021) Acta Phys - Chim Sin 37:2009011. https://doi.org/10.3866/PKU.WHXB202009011
10 Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, et al. (2014) Nat Nanotechnol 9:618–623. https://doi.org/10.1038/nnano.2014.152
11 Lei J, Gao Z, Tang L, Zhong L, Li J, Zhang Y, et al. (2022) Adv Sci 9:2103760. https://doi.org/10.1002/advs.202103760
12 Hu A, Chen W, Du X, Hu Y, Lei T, Wang H, et al. (2021) Energy Environ Sci 14:4115–4124. https://doi.org/10.1039/d1ee00508a
13 Liang X, Pang Q, Kochetkov IR, Sempere MS, Huang H, Sun X, et al. (2017) Nat Energy 2:17119. https://doi.org/10.1038/nenergy.2017.119
14 Han B, Zou Y, Ke R, Li T, Zhang Z, Wang C, et al. (2021) ACS Appl Mater Interfaces 13:21467–21473. https://doi.org/10.1021/acsami.1c04196
15 Li C, Liang Z, Li Z, Cao D, Zuo D, Chang J, et al. (2023) Nano Lett 23:4014–4022. https://doi.org/10.1021/acs.nanolett.3c00783
16 Bai M, Xie K, Yuan K, Zhang K, Li N, Shen C, et al. (2018) Adv Mater 30:1801213. https://doi.org/10.1002/adma.201801213
17 Gong Z, Wang P, Ye K, Zhu K, Yan J, Wang G, et al. (2022) J Colloid Interface Sci 625:700–710. https://doi.org/10.1016/j.jcis.2022.05.157
18 Zhang Y, Lv W, Huang Z, Zhou G, Deng Y, Zhang J, et al. (2019) Sci Bull 64:910–917. https://doi.org/10.1016/j.scib.2019.05.025
19 Li Q, Zeng FL, Guan YP, Jin ZQ, Huang YQ, Yao M, et al. (2018) Energy Storage Mater 13:151–159. https://doi.org/10.1016/j.ensm.2018.01.002
20 Lin L, Lu W, Zhao F, Chen S, Liu J, Xie H, et al. (2022) J Energy Chem 76:233–238. https://doi.org/10.1016/j.jechem.2022.09.017
21 Basile A, Bhatt AI, O’Mullane AP (2016) Nat Commun 7:11794. https://doi.org/10.1038/ncomms11794
22 Jing H-K, Kong L-L, Liu S, Li G-R, Gao X-P (2015) J Mater Chem A 3:12213–12219. https://doi.org/10.1039/C5TA01490E
23 Peng Z, Wang S, Zhou J, Jin Y, Liu Y, Qin Y, et al. (2016) J Mater Chem A 4:2427–2432. https://doi.org/10.1039/c5ta10050j
24 Zhao Y, Wang D, Gao Y, Chen T, Huang Q, Wang D (2019) Nano Energy 64:103893. https://doi.org/10.1016/j.nanoen.2019.103893
25 Gao Z, Zhang S, Huang Z, Lu Y, Wang W, Wang K, et al. (2019) Chinese Chem Lett 30:525–528. https://doi.org/10.1016/j.cclet.2018.05.016
26 Zhang SJ, Gao ZG, Wang WW, Lu YQ, Deng YP, You JH, et al. (2018) Small 14:1801054. https://doi.org/10.1002/smll.201801054
27 Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, et al. (2017) Adv Mater 29:1605531. https://doi.org/10.1002/adma.201605531
28 Luo Y, Li T, Zhang H, Yu Y, Hussain A, Yan J, et al. (2021) J Energy Chem 56:14–22. https://doi.org/10.1016/j.jechem.2020.07.036
29 Liang J, Li X, Zhao Y, Goncharova L V., Li W, Adair KR, et al. (2019) Adv Energy Mater 9:1902125. https://doi.org/10.1002/aenm.201902125
30 Liang J, Li X, Zhao Y, Goncharova L V., Wang G, Adair KR, et al. (2018) Adv Mater 30:1804684. https://doi.org/10.1002/adma.201804684
31 Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J, et al. (2017) Energy Storage Mater 11:16–23. https://doi.org/10.1016/j.ensm.2017.09.007
32 Lang J, Long Y, Qu J, Luo X, Wei H, Huang K, et al. (2018) Energy Storage Mater 16:85–90. https://doi.org/10.1016/j.ensm.2018.04.024
33 Yuan Y, Wu F, Bai Y, Li Y, Chen G, Wang Z, et al. (2018) Energy Storage Mater 16:411–418. https://doi.org/10.1016/j.ensm.2018.06.022
34 Yan C, Cheng XB, Yao YX, Shen X, Li BQ, Li WJ, et al. (2018) Adv Mater 30:1804461. https://doi.org/10.1002/adma.201804461
35 Lin Y, Wen Z, Liu J, Wu D, Zhang P, Zhao J (2021) J Energy Chem 55:129–135. https://doi.org/10.1016/j.jechem.2020.07.003
36 Jia W, Wang Q, Yang J, Fan C, Wang L, Li J (2017) ACS Appl Mater Interfaces 9:7068–7074. https://doi.org/10.1021/acsami.6b14614
37 Ma L, Kim MS, Archer LA (2017) Chem Mater 29:4181–4189. https://doi.org/10.1021/acs.chemmater.6b03687
38 Liu F, Xiao Q, Wu H Bin, Shen L, Xu D, Cai M, et al. (2018) Adv Energy Mater 8:1701744. https://doi.org/10.1002/aenm.201701744
39 Kim JY, Kim AY, Liu G, Woo JY, Kim H, Lee JK (2018) ACS Appl Mater Interfaces 10:8692–8701. https://doi.org/10.1021/acsami.7b18997
40 Li Y, Sun Y, Pei A, Chen K, Vailionis A, Li Y, et al. (2018) ACS Cent Sci 4:97–104. https://doi.org/10.1021/acscentsci.7b00480
41 Li WJ, Li Q, Huang J, Peng JY, Chu G, Lu YX, et al. (2017) Chinese Phys B 26:088202. https://doi.org/10.1088/1674-1056/26/8/088202
42 Li Y, Li Y, Sun Y, Butz B, Yan K, Koh AL, et al. (2017) Nano Lett 17:5171–5178. https://doi.org/10.1021/acs.nanolett.7b02630
43 Zhao J, Liao L, Shi F, Lei T, Chen G, Pei A, et al. (2017) J Am Chem Soc 139:11550–11558. https://doi.org/10.1021/jacs.7b05251
44 Ni J, Lei Y, Han Y, Zhang Y, Zhang C, Geng Z, et al. (2023) Batteries 9:283. https://doi.org/10.3390/batteries9050283
45 Ma Y, Qi P, Ma J, Wei L, Zhao L, Cheng J, et al. (2021) Adv Sci 8:2100488. https://doi.org/10.1002/advs.202100488
46 Liu Y, Tzeng YK, Lin D, Pei A, Lu H, Melosh NA, et al.
47 (2018) Joule 2:1595–1609. https://doi.org/10.1016/j.joule.2018.05.007
48 Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, et al. (2020) Angew Chemie - Int Ed 59:2055–2060. https://doi.org/10.1002/anie.201913351
49 Song G, Hwang C, Song WJ, Lee JH, Lee S, Han DY, et al. (2022) Small 18:2105724. https://doi.org/10.1002/smll.202105724
50 Xiao Y, Xu R, Yan C, Liang Y, Ding JF, Huang JQ (2020) Sci Bull 65:909–916. https://doi.org/10.1016/j.scib.2020.02.022
51 Liang Y, Xiao Y, Yan C, Xu R, Ding JF, Liang J, et al. (2020) J Energy Chem 48:203–207. https://doi.org/10.1016/j.jechem.2020.01.027
52 Lee YG, Ryu S, Sugimoto T, Yu T, Chang WS, Yang Y, et al. (2017) Chem Mater 29:5906–5914. https://doi.org/10.1021/acs.chemmater.7b01304
53 Singh N, Arthur TS, Jones M, Tutusaus O, Takechi K, Matsunaga T, et al. (2019) ACS Appl Energy Mater 2:8912–8918. https://doi.org/10.1021/acsaem.9b01937
54 Wang H, Matsui M, Kuwata H, Sonoki H, Matsuda Y, Shang X, et al. (2017) Nat Commun 8:15106. https://doi.org/10.1038/ncomms15106
55 Delaporte N, Perea A, Collin-Martin S, Léonard M, Matton J, Gariepy V, et al. (2022) Batter Supercaps 5:202200245. https://doi.org/10.1002/batt.202200245
56 Wang L, Zhang L, Wang Q, Li W, Wu B, Jia W, et al. (2017) Energy Storage Mater 10:16–23. https://doi.org/10.1016/j.ensm.2017.08.001
57 Wang L, Wang Q, Jia W, Chen S, Gao P, Li J (2017) J Power Sources 342:175–182. https://doi.org/10.1016/j.jpowsour.2016.11.097
58 Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, et al. (2018) Nat Nanotechnol 13:337–343. https://doi.org/10.1038/s41565-018-0061-y
59 Zhang YJ, Bai WQ, Wang XL, Xia XH, Gu CD, Tu JP (2016) J Mater Chem A 4:15597–15604. https://doi.org/10.1039/c6ta06612g
60 Kazyak E, Wood KN, Dasgupta NP (2015) Chem Mater 27:6457–6462. https://doi.org/10.1021/acs.chemmater.5b02789
61 Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, et al. (2015) ACS Nano 9:5884–5892. https://doi.org/10.1021/acsnano.5b02166
62 Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, et al. (2017) J Mater Chem A 5:12297–12309. https://doi.org/10.1039/c7ta03116e
63 Cao Y, Meng X, Elam JW (2016) ChemElectroChem 3:858–863. https://doi.org/10.1002/celc.201600139
64 Chen L, Chen KS, Chen X, Ramirez G, Huang Z, Geise NR, et al. (2018) ACS Appl Mater Interfaces 10:26972–26981. https://doi.org/10.1021/acsami.8b04573
65 Chen K, Pathak R, Gurung A, Adhamash EA, Bahrami B, He Q, et al. (2019) Energy Storage Mater 18:389–396. https://doi.org/10.1016/j.ensm.2019.02.006
66 Zhao J, Lee HW, Sun J, Yan K, Liu Y, Liu W, et al. (2016) Proc Natl Acad Sci U S A 113:7408–7413. https://doi.org/10.1073/pnas.1603810113
67 Wang W, Yue X, Meng J, Wang J, Wang X, Chen H, et al. (2018) Energy Storage Mater 18:414–422. https://doi.org/10.1016/j.ensm.2018.08.010
68 Liu W, Guo R, Zhan B, Shi B, Li Y, Pei H, et al. (2018) ACS Appl Energy Mater 1:1674–1679. https://doi.org/10.1021/acsaem.8b00132
69 Guan M, Huang Y, Meng Q, Zhang B, Chen N, Li L, et al. (2022) Small 18:2202981. https://doi.org/10.1002/smll.202202981
70 Jang EK, Ahn J, Yoon S, Cho KY (2019) Adv Funct Mater 29:1905078. https://doi.org/10.1002/adfm.201905078
71 Kwak WJ, Park J, Nguyen TT, Kim H, Byon HR, Jang M, et al. (2019) J Mater Chem A 7:3857–3862. https://doi.org/10.1039/c8ta11941d
72 Xu R, Xiao Y, Zhang R, Cheng XB, Zhao CZ, Zhang XQ, et al. (2019) Adv Mater 31:1808392. https://doi.org/10.1002/adma.201808392
73 Jiang Z, Jin L, Han Z, Hu W, Zeng Z, Sun Y, et al. (2019) Angew Chemie - Int Ed 58:11374–11378. https://doi.org/10.1002/anie.201905712
74 Wang J, Hu H, Zhang J, Li L, Jia L, Guan Q, et al. (2022) Energy Storage Mater 52:210–219. https://doi.org/10.1016/j.ensm.2022.08.004
75 Sun S, Myeong S, Kim J, Lee D, Kim J, Park K, et al. (2022) Chem Eng J 450:137993. https://doi.org/10.1016/j.cej.2022.137993
76 Liu X, Liu J, Qian T, Chen H, Yan C (2020) Adv Mater 32:1902724. https://doi.org/10.1002/adma.201902724
77 Huang Z, Huang T, Ye X, Feng X, Yang X, Liang J, et al. (2022) Appl Surf Sci 605:154586. https://doi.org/10.1016/j.apsusc.2022.154586
78 Xu Q, Lin J, Ye C, Jin X, Ye D, Lu Y, et al. (2020) Adv Energy Mater 10:1903292. https://doi.org/10.1002/aenm.201903292
79 Liu Y, Lin D, Jin Y, Liu K, Tao X, Zhang Q, et al. (2017) Sci Adv 3:eaao0713. https://doi.org/10.1126/sciadv.aao0713

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.