Removal of Diclofenac-Na from aqueous solution onto H3PO4 modified composite clay

  • Ayobami Olu Ajani Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria https://orcid.org/0000-0003-2148-6014
  • Ademola Toheeb Adeniji Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Department of Chemistry, Universidade do Porto, Porto, Portugal https://orcid.org/0000-0002-8049-1537
  • Samson Shina Ayodabo Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria https://orcid.org/0000-0003-0210-0470
  • Abass Olanrewaju Alade Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Science and Engineering Research Group (SAERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria https://orcid.org/0000-0003-4837-3685
  • Tinuade Jolaade Afolabi Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria https://orcid.org/0000-0001-9618-0226
  • Sofiat Ololade Ganiyu Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Bioenvironmental, Water and Engineering Research Group (BWERG), Ladoke Akintola University of Technology, Ogbomoso, Nigeria https://orcid.org/0000-0002-4808-4528
Keywords: bentonite-kaolinite-worm cast clay, composite, Diclofenac-Na, geosorption, wastewater

Abstract

Under batch experiment conditions, this work seeks to successfully remove Diclofenac-Na (DCF-Na) from an aqueous solution utilizing a composite sorbent made of Bentonite, Kaolinite clay, and Worm casting (BKW). This study investigated the structural modification of the H3PO4 Modified Clay by X-ray fluorescence and the effect of selected adsorption factors – DCF-Na concentration and modified BKW composite dosage. The concentration equilibrium data was used to study six isotherm models. Freundlich isotherm model better explained the adsorption of DCF-Na onto modified BKW composite with a correlation coefficient close to 1. Kinetics models were examined, and the Elovich model gave a better fit than other kinetic models studied. Mass diffusion mechanisms and thermodynamics studies were successfully carried out. The enthalpy change values evaluated were negative, which revealed the spontaneity of DCF-Na remediation onto modified BKW, and that DCF-Na adsorption is exothermic and occurred through a physisorption process.

References

1 Hombal P, Gudadappanavar A, Kavi A (2016) Int Surg J 3:557-561. Crossref

2 Zhang Y, Geißen S-U, Gal C (2008) Chemosphere 73:1151-1161. Crossref

3 Acuña V, Ginebreda A, Mor JR, Petrovic M, Sabater S, Sumpter J et al (2015) Environ Int 85:327-333. Crossref

4 Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY (2016) Environ Int 96:127-138. Crossref

5 Memmert U, Peither A, Burri R, Weber K, Schmidt T, Sumpter JP et al (2013) Environ Toxicol Chem 32:442-452. Crossref

6 Sadanand P, James R (2016) American Journal of Chemistry and Applications 3:8-19.

7 Figueroa RA, Leonard A, MacKay AA (2004) Environ Sci Technol 38:476-483. Crossref

8 Crini G, Lichtfouse E (2019) Environ Chem Lett 17:145-155. Crossref

9 Obiageli R (2017) Journal of Chemical Technology and Metallurgy 52:491-504.

10 Bhadra BN, Seo PW, Jhung SH (2016) Chem Eng J 301:27-34. Crossref

11 Yoon S-Y, Lee C-G, Park J-A, Kim J-H, Kim S-B, Lee S-H et al (2014) Chem Eng J 236:341-347. Crossref

12 Osagie EI, Owabor CN (2015) Advances in Chemical Engineering and Science 5:345-351. Crossref

13 Wu C, Xiong Z, Li C, Zhang J (2015) RSC Adv 5:82127-82137. Crossref

14 Okeowo IO, Balogun EO, Ademola AJ, Alade AO, Afolabi TJ, Dada EO et al (2020) Int J Environ Res 14:215-233. Crossref

15 Ayawei N, Ebelegi AN, Wankasi D (2017) J Chem-NY 2017:3039817. Crossref

16 Redlich O, Peterson DL (1959) J Phys Chem-US 63:1024-1024. Crossref

17 Cestari AR, Vieira EFS, dos Santos AGP, Mota JA, de Almeida VP (2004) J Colloid Interf Sci 280:380-386. Crossref

18 Coulson CA (1958) Math Gaz 42:165-165. Crossref

19 Vermeulen T (1953) Ind Eng Chem 45:1664-1670. Crossref

20 Hoskins WM, Bray WC (1926) J Am Chem Soc 48:1454-1474. Crossref

21 Aharoni C, Sideman S, Hoffer E (2007) J Chem Technol Biot 29:404-412. Crossref

22 Jodeh S, Abdelwahab F, Jaradat N, Warad I, Jodeh W (2016) Journal of the Association of Arab Universities for Basic and Applied Sciences 20:32-38. Crossref

23 Mabrouki H, Akretche DE (2016) Desalin Water Treat 57:6033-6043. Crossref

24 Larous S, Meniai A-H (2016) Int J Hydrogen Energ 41:10380-10390. Crossref

25 Liang XX, Omer AM, Hu Z, Wang Y, Yu D, Ouyang X (2019) Chemosphere 217:270-278. Crossref

26 Chang F, Memon N, Memon S, Chang AS (2022) Int J Environ Sci Te. Crossref

27 de Franco MAE, de Carvalho CB, Bonetto MM, Soares R de P, Féris LA (2017) J Clean Prod 161:947-956. Crossref

28 de Oliveira T, Guégan R (2016) Environ Sci Technol 50:10209-10215. Crossref

29 Rigueto CVT, Rosseto M, Nazari MT, Ostwald BEP, Alessandretti I, Manera C et al (2021) Journal of Environmental Chemical Engineering 9:105030. Crossref

30 Liu J, Wang X (2013) Sc World J 2013:897159. Crossref

31 Maia GS, de Andrade JR, da Silva MGC, Vieira MGA (2019) Powder Technol 345:140-150. Crossref

32 Czech B, Kończak M, Rakowska M, Oleszczuk P (2021) J Clean Prod 288:125686. Crossref

33 Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y et al (2016) J Hazard Mater 310:235-245. Crossref

34 Jodeh S, Abdelwahab F, Jaradat N, Warad I, Jodeh W (2016) Journal of the Association of Arab Universities for Basic and Applied Sciences 20:32-38. Crossref

35 Antunes M, Esteves VI, Guégan R, Crespo JS, Fernandes AN, Giovanela M (2012) Chem Eng J 192:114-121. Crossref

36 Huang L, Mao N, Yan Q, Zhang D, Shuai Q (2020) ACS Applied Nano Materials 3:319-326. Crossref

37 Lu X, Shao Y, Gao N, Chen J, Zhang Y, Wang Q et al (2016) Chemosphere 161:400-411. Crossref

38 Moral-Rodríguez AI, Leyva-Ramos R, Ania CO, Ocampo-Pérez R, Isaacs-Páez ED, Carrales-Alvarado DH et al (2019) Environ Sci Pollut R 26:6141-6152. Crossref

39 Salvestrini S, Fenti A, Chianese S, Iovino P, Musmarra D (2020) Journal of Environmental Chemical Engineering 8:104105. Crossref

40 Rani S, Sud D (2016) Plant, Soil and Environment 61:36-42. Crossref
Published
2022-08-16
How to Cite
Ajani, A., Adeniji, A., Ayodabo, S., Alade, A., Afolabi, T., & Ganiyu, S. (2022). Removal of Diclofenac-Na from aqueous solution onto H3PO4 modified composite clay. Chemical Bulletin of Kazakh National University, 106(3), 20-35. https://doi.org/https://doi.org/10.15328/cb1274