Immobilized anticancer agents and metal nanoparticles in a matrix of gellan: achievements and prospects

  • Zhanar A. Nurakhmetova Institute of Polymeric Materials and Technologies, Almaty, Kazakhstan
  • Gulnur S. Tatykhanova Institute of Polymeric Materials and Technologies, Almaty, Kazakhstan
  • Sarkyt Ye. Kudaibergenov Institute of Polymeric Materials and Technologies, Almaty, Kazakhstan; Satbaev University Almaty, Kazakhstan
Keywords: polysaccharide, gellan gum, sol-gel transition, immobilization, gold nanoparticles and nanorods, plasmon photothermal therapy

Abstract

A review is devoted to recent achievements in development of anticancer drugs based on natural polysaccharide – gellan that possesses coil-helix conformational transition, sol-gel phase transition, thermo- and salt sensitivity. The characteristics of high- and low-acyl gellan are briefly given and the influence of mono- and multivalent metal ions on the gelation efficiency is described. The mucoadhesive properties of gellan and its modified derivatives are briefly considered in the context of application in pharmacy as oral, buccal, nasal, ophthalmologic, vaginal forms. The main attention is paid to anticancer drugs, gold and silver nanoparticles immobilized within gellan matrix by chemical bonds, physical adsorption and chemosorption. The state-of-the art and perspectives of development of plasmonic photothermal therapy of cancer cells that is one of the promising direction of nanomedicine in diagnosis and treatment of oncological diseases are highlighted. It is outlined that the further strategy of development and application of plasmonic photothermal therapy into clinical practice is due to selection of metal nanoparticles with optimal sizes, high concentration, low cytotoxicity and suitable optical characteristics.

References

1 Osmalek T, Froelich A, Tasarek S (2014) Int J Pharm 466:328-340. Crossref

2 Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Food Technol Biotechnol 45:341-354.

3 Morris ER, Nishinari N, Rinaudo M (2012) Food Hydrocolloids 28:373-411. Crossref

4 Giavasis I, Harvey LM, McNeil B (2000) Crit Rev Biotechnol 20:177-211. Crossref

5 Gussenov I., Nuraje N., Kudaibergenov S. (2019) Energy Reports 5:733-746. Crossref

6 Nurakhmetova Zh. Synthetic and natural polymers for oil production and development of drilling fluids. (2018) PhD Thesis, Satbayev University 101.

7 Chen Q, Ma H, Yuan Y, Han X, Zhu J, Zhang H (2017) Int J Food Prop 20(3):2332-2341. Crossref

8 Kirchmajer DM, Steinhoff B, Warren H, Clark R, Panhuis M. (2014) Carbohydr Res 388:125-129. Crossref

9 Emako M, Tomohisa T, Peter A, Katsuyoshi N (1996) J. Agric Food Chem 44(9):2486-2495. Crossref

10 Kanesaka Sh, Watanabe T, Matsukawa Sh (2004) Biomacromol 5:863-868. Crossref

11 Kohei K, Junichi H. Shiro M (2005) Carbohydr Polym 61:168 – 173. Crossref

12 Hans G, Olav S (1997) Carbohydr Polym 7:371–393. Crossref

13 Lin D, Xinxing L, Zhen T. (2010) Carbohydr Polym 81(2):207 - 212. Crossref

14 Nickerson M, Paulson A, Speers A (2003) Food Hydrocoll 17:577-583. Crossref

15 Nickerson M, Paulson A, Hallett F (2008) Food Research Int 41:462-471. Crossref

16 Juming T, Marvin A, Yanyin Z (1996) Carbohydr Polym 29:11–16. Crossref

17 Nitta Y, Takahashi R, Nishinari K (2010) Biomacromol 11:187–191. Crossref

18 Nishinari K, Miyoshi E (1999) Prog Colloid Polym Sci 114:68–82. Crossref

19 Kudaibergenov SE, Tatykhanova GS, Sigitov VB, Nurakhmetova ZA, Blagikh EV, Gussenov I Sh, Seilkhanov TM (2016) Macromol Symp 363:20-35. Crossref

20 Ogawa E, Matsuzawa H, Iwahashi M (2002) Food 16(1):1-9. Crossref

21 Fukada H, Takahashi K, Kitamura S, Yuguchi Y, Urakawa H, Kajiwara K (2002) J Therm Anal Calorim 70:797-806. Crossref

22 Yuguchi Y, Urakawa H, Kitamura S, Wataoka I, Kajiwara K (1999) Prog Colloid Polym Sci 114:41-47.

23 Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL (2010) J Biomater Res 93(3):852-863. Crossref

24 Narkar M, Sher P, Pawar A (2010) AAPS Pharm Sci Tech 11(1):267-277. Crossref

25 Agnihotri SA, Aminabhavi TM (2005) Drug Dev Ind Pharm 31:491-503. Crossref

26 Emeje MO, Franklin-Ude PI, Ofoefule SI (2010) Int J Biol Macromol 47:158–163. Crossref

27 Shah DP, Jani GK (2010) ARS Pharm 51:28-40. URL

28 Ranade VV. CRC Press, Hoboken 2011.

29 Nandi C, Patra P, Priyadarshini R, Kaity S, Ghosh LK (2015) Int J Biol Macromol 72: 965-974. Crossref

30 Muthukumar T, Song JE, Khang G. (2019) Molecules 24:4514. Crossref

31 Mohammadinejad R, Kumar A, Ranjbar‐Mohammadi M, Ashrafizadeh Mi, Han SS, Khang G, Roveimiab Z. (2020) Polymers 12:176. Crossref

32 Татыханова ГС, Асеев ВА, Кудайбергенов СЕ. (2020) Review J Chem10:1-2. (в печати).

33 Prezotti FG, Siedle I, Boni FI, Chorilli M, Mueller I, Cury BSF. (2020) Pharmaceutical Development and Technology 25:159-167. Crossref

34 Agibayeva LE, Kaldybekov DB, Porfiryevа NN, Garipovа VR, Mangazbayevа RA, Moustafine RI, Semina II, Mun GA, Kudaibergenov SE, Khutoryanskiy VV (2020) Int J Pharm 577:119093. Crossref

35 Jelkman M, Leichner C, Zaichik S, Laffleur F, Bernkop-Schnurch A (2020) Int J Biolog Macromol. 158:1037. Crossref

36 Brannigan RP, Khutoryanskiy VV (2019) Macromolecular Bioscience 19:1900194. Crossref

37 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2017) Nat Nanotechnol 2:751-760. Crossref

38 Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger D, Lu X, He X (2015) ACS Nano 9(6):5725-5740. Crossref

39 Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Chem Rev 115(19):11147-11190. Crossref

40 Kudaibergenov SE, Xu S, Tatykhanova GS (2019) Academ. J. Polym. Sci. 2(3):555588 (1-10). Crossref

41 Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Nat Rev/Mater 1:1-12. Crossref

42 Wagner AM, Spencer DS, Peppas NA (2018) J Appl Polym Sci 135:46154. Crossref

43 D’Arrigo G, Navarro G, Di Meo C, Matricardi P, Torchilin V (2014) Eur J Pharm Biopharm 87:208-216. Crossref

44 D’Arrigo G, Di Meo C, Gaucci E, Chichiarelli S, Coviello T, Capitani D, Alhaaique P, Matricardi P (2012) Soft Matter 8:11557-11564. Crossref

45 Nandi G, Patra P, Priyadarshini KS, Ghosh LK (2015) Int J Biol Macromol 72:965-974. Crossref

46 Riley RS, Day E S (2017) Rev Nanomed Nanobiotechnol 9:16. Crossref

47 Shan J, Tenhu H (2007) Chem. Commun 44:4580-4598. Crossref

48 Dhar S, Mali V, Bodhankar S. Shiras A. Prasad BLV, Pokharkar V (2011) J Appl Toxicol 31(5):411-420. Crossref

49 Nurakhmetova Zh A, Azhkeyeva A N, Klassen I A, Tatykhanova G S (2020) Polymers 12:2625-2640 Crossref

50 Dhar S, Reddy EM, Pokharkar V, Prasad BLV (2008) Chem Eur J 14:10244-10250. Crossref

51 Dhar S, Reddy EM, Prabhune A, Pokharkar V, Shiras A, Prasad BLV (2011) Nanoscale 3(2):575-580. Crossref

52 Dhar S, Murawala P, Shiras A, Pokharkar V, Prasad BLV (2012) Nanoscale 4:563-567. Crossref

53 Bucharskaya AB, Maslyakova GN, Afanasyeva GA, Terentyuk GS, Navol okin BN, Zlobina OV, Chumakov DS, Bashkatov AN, Genina EA, Khlebtsov NG, Tuchin VV (2015) J Innovat Optical Health Sci 8(3):1541004. Crossref

54 Bucharskaya AB, Maslyakova GN, Dikht NI, Navolokin NA, Terentyuk GS, Bashkatov AN, Genina EA, Khlebtsov BN, Khlebtsov NG, Tuchin VV (2017) Bionanoscience 7(1):216-221. Crossref

55 Bucharskaya AB, Maslyakova GN, Dikht NI, Terentyuk GS, Navolokin NA, Bashkatov AN, Genina EA, Khlebtsov BN, Khlebtsov NG, Tuchin VV (2017) Method of plasmon resonance photothermal therapy of tumors in experiment. Patent of the Russian Federation. No 2614507. (In Russian)

56 Vial S, Reis RI, Oliveira JM (2017) Curr Opin Solid State Mater Sci 21(2):92-112. Crossref

57 Tao Y, Ju E, Dong K, Qu X (2014) Biomaterials 35:6646-6656. Crossref

58 Huang XH, Jain PK, El-Sayed I., El-Sayed MA (2008) Lasers Medic Sci 23:217-228. Crossref

59 Huang X, Neretina S, El-Sayed MA (2009) Adv Mater 21:4880-4910. Crossref

60 Lim W, Gao Z (2016) Nano Today 11:168-188. Crossref

61 Zhang Y, Zhan X, Xiong J, Peng Sh, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K, Zhou N, Min W. (2018) Scientific Reports 8:8720. Crossref

62 Huang XH, Jain PK, El-Sayed IH, El-Sayed MF (2007) Nanomedicine 2:681-693. Crossref

63 Hirsch LR, Stafford RJ, Bankson JA, Rivera SB, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc. Natl. Acad. Sci. USA. 100:13549-13554. Crossref

64 Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK (2014) Molecules 19:20580-20593. Crossref

65 Day ES, Thompson PA, Zhang L, Lewinski NA, Drezek RA, Blaney SM, West JL (2011) J Neurooncol 104:55-63. Crossref

66 Mackey MA, Ali MRK, Austin LA, Near RD, El-Sayed MA (2014) J Phys Chem B 118(5):1319-1326. Crossref

67 Huang X, Neretina S, El-Sayed MA (2009) Adv Mater 21(48):4880-4910. Crossref

68 Viera S, Vial S, Maia F, Carvalho M, Reis RL, Granja PL, Oliveira JM (2015) RSC Adv 5: 77996-78005. Crossref

69 Nikoobakht B, El-Syed MA (2003) Chem Mater 15:1957-1962. Crossref

70 Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, Milz S (2004) Anticancer Res 24(6):3743-3748. Crossref

71 Lim WQ, Gao Z (2016) Nano Today 11:168-188. Crossref

72 Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T (2014) ACS Nano 8:6372-6381. Crossref
Published
2020-12-24
How to Cite
Nurakhmetova, Z., Tatykhanova, G., & Kudaibergenov, S. (2020). Immobilized anticancer agents and metal nanoparticles in a matrix of gellan: achievements and prospects. Chemical Bulletin of Kazakh National University, 99(4), 32-41. https://doi.org/https://doi.org/10.15328/cb1169