CdS нанобөлшектерінің тұрақтандыруын қамтамасыз ететін механизм талқыланды. CdS және ПММА нанокомпозиттерінің спектрлі-люминесцентті қасиеттері зерттелді.

Әдебиет

- 1. Хайрутдинов Р.Ф. Химия полупроводниковых наночастиц // Успехи химии. 1998. 2, 125-129.
- 2. Sun, Y.-P., Riggs, J. E., Henbest, K., Martin, R. B. Nanomaterials as Optical Limiters // J. Nonlinear Opt. Phys. Mater. 2000. 9, 481-503.
- 3. Willner I. and Willner B. Functional Nanoparticle Architectures for Sensoric, Optoelectronic and Bioelectronic Applications // Pure Appl. Chem. 2002. 74, 1773-1783.
- 4. Lakowicz J. R., Gryczynski I., Gryczynski Z., and Murphy C. J. Luminescence spectral properties of CdS nanoparticles // J. Phys. Chem. 1999. B103, 7613-7620.
- 5. Ghiordanescu V., Sima M., Nedelcu M., Giubelan M. Optical properties of polyaniline/CdS nanocrystals composite film // J. Optoelectronics and Advanced Materials. 2001. 3, 83-89.
- 6. Pedone L., Caponetti E., and Leone M. Synthesis and characterization of CdS nanoparticles embedded in a polymethylmethacrylate matrix // J. Colloid and Interface Science. 2005. 284, 495–500.
- 7. Литманович А.А., Паписов И.М. Получение нанокомпозитов в процессах, контролируемых макромолекулярными псевдоматрицами. Теоретическое рассмотрение // Высокомолек. соед. 1997. 39, 2, 323—327
- 8. Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites // J. Am. Chem. Soc. 1993. 115, 8706–8715.

THE EMBEDDING OF COLLOIDAL CADMIUM SULFIDE NANOPARTICLES IN PMMA MATRIX

M.S. Bissengaliyeva, M.M. Zhukush, I.S. Irgibaeva

The technique of synthesis of polymethylmethacrylate – cadmium sulfide nanocomposites involving precipitation of CdS nanoparticles from polymethylmethacrylate solution in methylmethacrylate monomer with its subsequent polymerization is presented. A difference between the spectral-luminescent properties of the surface composite layer and the nanomaterial bulk, connected with redistribution of particles with higher degree of imperfection closer to the surface during polymerization is revealed.

ВНЕДРЕНИЕ КОЛЛОИДНЫХ НАНОЧАСТИЦ СУЛЬФИДА КАДМИЯ В МАТРИЦУ ПОЛИМЕТИЛМЕТАКРИЛАТА

М.С. Бисенгалиева, М.М. Жукуш, И.С. Иргибаева

Представлена методика синтеза нанокомпозитов «полиметилметакрилат-сульфид кадмия» с применением осаждения наночастиц CdS из раствора полиметилметакрилата в мономере метилметакрилата с последующей его полимеризацией. Обнаружена разница между спектральнолюминесцентными свойствами поверхностного композитного слоя и объема наноматериала, связанная с перераспределением частиц с высоким уровнем дефектности ближе к поверхности в процессе полимеризации.

УДК 547.91

СИНТЕЗ И ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ НЕКОТОРЫХ 4-ТИАЗОЛИДОНОВ

А.В. Болдашевский, С.Д. Фазылов, О.А. Нуркенов, Т.С. Животова, К.А. Аяпбергенов

Институт органического синтеза и углехимии РК, г. Караганда Инновационный Евразийский университет, г. Павлодар <u>Luiziana 7@bk.ru</u>, (7182)-60-65-64

В статье рассмотрены некоторые результаты изучения реакционной способности 4-тиазолидонов при микроволновой активации.

Соединения, содержащие в молекулярной структуре тиазольную группировку, нашли широкое применение в медицинской практике. Это вызвано, во-первых, той исключительной ролью, которую играют в биоэнергетике организма вещества, полученные на их основе. Во-вторых, это

разнообразные виды физиологической активности этих соединений: противовоспалительная, противовопухолевая, противовирусная и др. /1, 2/. Одним из них является сульфамидный препарат — сульфотиазол (норсульфазол) (1), обладающий сильным бактерицидным действием. Тиазольный цикл входит в состав витамина В1 (тиамина (2) /3/. Сильными антигельминтными свойствами обладает тетрализон (3), открытый бельгийским ученым Янссеном /1,4/:

С химической точки зрения тиазоловые соединения благодаря своим разнообразным химическим свойствам, являются отличными исходными субстратами для формирования комбинаторных рядов гетероциклических соединений и моделирования структуры потенциальных биологически активных соединений, что и определяет высокую практическую значимость исследований в данном направлений. С другой стороны, различные производные тиазолов интересны с точки зрения таких классических вопросов теоретической органической химии, как реакционная способность, таутомерия, конформационный анализ и особенности электронного строения данных систем.

Одним из интересных в плане изучения строения и реакционной способности среди тиазоловых соединений является тиазолидиндион-2,4 («горчичноуксусная кислота») и 2-тиоксотиазолидин-4-он (роданин) /5/. В медицинскую практику внедрены стимуляторы эндогенного инсулина тиазолидиндионового ряда (троглитазон, пиоглитазон, розиглитазон, дорглитазон), которые стали отдельной фармакологической группой лекарственных средств в терапии инсулиннезависимого диабета. Производные роданина - эпальрестат является высокоэффективным ингибитором альдозоредуктазы и имеет определенные перспективы для лечения осложненений диабета (катаракты, нейропатии) /1-5/. Ряд оригинальных производных 4-тиазолидонов находятся на разных стадиях клинических исследований как потенциальные тиромиметические, противовоспалительные, антимикробные, противовирусные, противоопухолевые, тромболитические средства. С другой стороны 2,4-тиазолидиндионовый и роданиновый циклы, благодаря разносторонней реакционной способности, являются «building blocks» для конструирования различных конденсированных и неконденсированных гетероциклических систем. Поэтому поиск структур-лидеров с использованием тиазолидинового каркаса («tempate») для целенаправленного синтеза биологически активных веществ в этом ряду соединений является перспективным. Для моделирования структуры новых веществ и синтеза комбинаторных библиотек нами изучаются производные тиазолидиндиона-2.4 и роданина. Следует отметить, что многие реакции синтеза их производных отличаются длительность протекания и требуют создания определенных условий, что обусловлено их структурными особенностями.

Известно, что применение микроволнового облучения (МВО) способно значительно - в десятки и сотни раз способно уменьшить время протекания реакции /6/. В микроволновом поле многие полярные вещества способны разогреваться при воздействии на них электромагнитного излучения микроволнового диапазона (электромагнитные колебания с частотой примерно от 300 МГц до 300 ГГц). Анализ литературных данных показывает /6-8/, что метод МВ активации химических процессов применим практически ко всем типам органических реакций. Конечный результат химической реакции, проводимой в условиях МВО, зависит главным образом от природы исходных реагентов (их структурных особенностей и распределения электронной плотности в молекулах), от механизма реакции, от времени и мощности МВО, а также от типа применяемых в реакции носителя, катализатора и растворителя. При этом указанные выше факторы необходимо рассматривать в совокупности для каждого конкретного типа реакции. Поэтому разработка новых методов получения производных тиазолидинонов-4 не потеряла свою актуальность.

Производные тиазолидиндиона-2,4 обладают вступают в реакции замещения, алкилирования и конденсации. Так, длительное нагревание производных 3-этилтиазолидиндиона-2,4 (4) с P_2S_5 в пиридине при 100° С приводят к 4-тиоаналогам (5). Дальнейшее нагревание 4-тиоаналогов с P_2S_5 в коллидине при 172° С ведет к образованию 4-тиороданинов (6) 7,8/:

Алкилирование тиазолидиндионов-2,4 (7) с помощью алкилгалогенидов, диазометана или диметилсульфата приводит к образованию 3-алкилпроизводных (8) /4-9/:

Реакция может быть проведена с выделением Ag - или K-солями тиазолидиндионов-2,4, а также в присутствии водных и спиртовых растворов щелочей, CH_3ONa , K_2CO_3 и др. Ни в одном случае не наблюдалось замещение алкильными радикалами по положению 2. Калиевые соли тиазолидиндиона-2,4 вступают в реакцию с трихлорметилсульфонилхлоридом в хлороформе и образуют и образуют 3-производное (35) с хорошими выходами.

В тиазоловом цикле молекул тиазолидиндионов-2,4 атомы водорода в положении 5 обладают достаточной подвижностью, что позволяет провести конденсацию с ароматическими альдегидами (41). Реакция проходит в среде уксусной кислоты в среде минеральных кислот при длительном нагревании.

С целью оптимизации процесса нами изучено влияние микроволнового излучения на реакционную способность тиазолидин-2,4-диона (1) в реакции с различными ароматическими альдегидами с получением 5-арилиденпроизводных тиазолидин-2,4-диона (9-12). Для сравнения синтез веществ (2-5) проводили также в классических условиях (3-5 час) (мощность облучения 50-750 Вт).

 $R = C_6H_5(9), n-F-C_6H_4(10), n-CH_3O-C_6H_4(11), o,n-(CH_3O)_2-C_6H_3(12)$

Применение микроволновой активации реакционной среды при мощности облучения 50-750 Вт (частота 2,45 Гц) позволило нам значительно сократить время реакции и получить целевые продукты с выходом 67-80%.

Микроволновому облучению подверглась реакционная смесь, состоящая из тиазолидин-2,4-диона (0,01 моль), безводного ацетата натрия (0,01 моль) и соответствующего ароматического альдегида (0,0125 моль) в 10 мл АсОН. Установлено, что при мощности облучения 750 Вт целевые продукты (9-12) удается синтезировать в течение 3-10 минут. Выходы веществ (9-12) после перекристаллизации из АсОН аналогичны выходам в классических условиях и составляют 67-80% в зависимости от природы радикала в исходном альдегиде.

Другим изучаемым нами объектом исследований является 3-R-роданины, получаемые взаимодействием тиокарбонил-бис-тиогликолевой кислоты с *п*-замещенными производными анилина, которые в условиях реакции Кневенагеля микроволновой активацией (750 Вт) превращены в 5-арилиденпроизводные (54-66%) (13-15) по следующей схеме:

$$Na_{2}CS_{2} + CI-CH_{2}-C \xrightarrow{O} HCI \xrightarrow{HO} C-CH_{2}-SC(S)SCH_{2}-C \xrightarrow{O} OH$$

$$HO \xrightarrow{O} C-CH_{2}-SC(S)SCH_{2}-C \xrightarrow{O} + R \xrightarrow{R'CHO} S \xrightarrow{R'} O$$

$$R = CH_{3}, N(CH_{3})_{2}, Br$$

$$(13-15)$$

Строение и состав полученных соединений (13-15) доказаны данными ИК-, ЯМР 1 Н- и 13 С- спектроскопии, элементного анализа.

Литература

- 1. Singh S.P., Parmar S.D., Raman K. Hemistry and biological activity of thiazolidinones // Chem. Rev. -1981. -Vol. 81. C.175-203.
- 2. Vicini P., Geronikaki A. and et. Synthesis and antimicrobial activity of novel 2-tgiazolylimino-5-arylidene-4-thiazolidinones // Bioorganic and Medicinal Chemistry. 2006. Vol.14. –P.3859-3864.
 - 3. Иванский В. И. Химия гетероциклических соединений. -М.: Высшая школа, 1978. 559 с.
- 4. St Laurent D.R., Gao Q., Wu D.D. Regioselective synthesis of 3-(heteroaryl)-iminothiazolidin-4-ones // Tetrahedron Letters, 2004. –Vol. 45(9). –P.1907-1910.
- 5. Colombo A., Carles Fernandes J. And et. Stereomeric studies on the oxidation and alkylation of 4-thiazolidinones // Tatrahedron Letters. -2008. -Vol.49. -P.1569-1572.
- 6. Kappe C.O., Stadler A. Microwaves in Organic and Medicinal Chemistry. Weinheim: Wiley-VCH, 2005. 410 p.
- 7. Крус К., Масиас А., Белецкая И.П. Взаимодействие хлорангидрида хлоруксусной кислоты с солями N-алкил(арил)дитиокарбаминовой кислоты // Журнал органической химии. 1988. Т.24. —Вып.7. С.2024-2026.
- 8. Bouzroura S., Bentarzi Y., Kaoua R. And et. A convenient one pot preparation of 4-thiazolidinones from enaminolactones // Org. Commun. -2010. -Vol.3:1. P.8-14.
- 9. Singh S.P., Parmar S.S., Raman K., Stenberg V.I. Chemistry and biological activity of thiazolidinones // Chem. Rev. 1981. Vol.81. No 2. P.175-203.

КЕЙБІР 4-ТИАЗОЛИДОНДАРДЫҢ СИНТЕЗІ МЕН ФУНКЦИОНАЛДЫҚ МҮМКІНШІЛІКТЕРІ

А.В. Болдашевский, С.Д. Фазылов, О.А. Нуркенов, Т.С. Животова, К.А. Аяпбергенов

Мақалада 4-тиазолидондардың реакциялық қабілеттіліктерінің кішітолқынды сәулелендіру жағдайындағы кейбір нәтижелері қарастырылған.

SYNTHESIS AND FUNCTIONAL POSSIBILITY OF SOME 4-TIAZOLIDONOV

A.B. Boldachevsky, S.D. Fazylov, O.A. Nurkenov, T.S. Zhyvotova, K.A. Aiapbergenov

In the article some results of a study of reactivity of 4-under microwave activation tiazolidonov