ЭЛЕКТРОВОССТАНОВЛЕНИЕ п-НИТРОДИЭТИЛАНИЛИНА НА НИКЕЛЕВЫХ КОМПОЗИТНЫХ-ЭЛЕКТРОДАХ

Ж.К.Каирбеков, Е.А.Аубакиров, А.Е.Сагимбаева

Казахский национальный университет им.аль-Фараби, г.Алматы

В статье приведены результаты электрохимического синтеза паминодиэтиланилинсульфата на никелевых композитных электродах. Установлено, что наибольшая электрокаталитическая активность в реакции восстановления п-НДА наблюдается на Ni+боксит и (Ni+боксит) Рd композитных электродах.

Технология производства п-аминодиэтиланилинсульфат (ЦВП-1) многостадийна, требует специального оборудования для проведения процесса при повышенном давлении водорода, причем особо вредные и пожароопасные условия труда создаются при использовании высокотоксичного метанола и пирофорного скелетного никелевого катализатора[1-3].

В связи с этим, представляло теоретический и особенно практический интерес осуществить электровосстановление пара- нитродиэтиланилина (п-НДА) в более мягких условиях при комнатной температуре и атмосферном давлении водорода.

Нами исследовались электрокаталитические свойства композитов Ni+боксит, Ni+красный шлам и (Ni+боксит)Pd, (Ni+красный шлам)Pd электродов катализаторов в процессе восстановления п-НДА в этанольнощелочной среде. Электроды готовили электроосаждением на нержавеющую сетку (подложку). В качестве дисперсных частиц использовали боксит и красный шлам. После предобработки, снимали гальваностатическую кривую заряжения и рассчитывали поверхность по известной методике [4].

Величины истинной никелевой поверхности композитных электродов приведены в таблице 1.

Таблица 1 — Изменение истинной никелевой поверхности композитных электродов в процессе электровосстановления увеличивающихся навесок п-нитродиэтиланилина

	$S_{\text{uct.}}$, M^2			
Композитный электрод	Концентрация п-НДА, $C \cdot 10^{-2}$ моль/л			
	0	1,0	2,5	10,0
Ni+боксит	0,29	0,15	0,13	0,13
(Ni+боксит)Рd	0,32	0,16	0,14	0,14
Ni+красный шлам	0,12	0,08	0,07	0,07
(Ni+красный шлам) Pd	0,14	0,09	0,08	0,08

Из приведенных данных видно, что поверхность свежеприготовленных никелевых электродов и модифицированных палладием композитных электродов в 1,5-2 раза больше, чем того же электрода после электровосстановления п-НДА.

Адсорбцию п-НДА на композитных электродах-катализаторах изучали путем снятия кривых смещения потенциала электродов при разомкнутой цепи после введения п-НДА на поверхность электрода, покрытую адсорбированным водородом (E=0B). В таблице 2,3 представлены величины стационарных потенциалов адсорбции п-НДА на Ni+боксит, Ni+красный шлам и (Ni+боксит)Pd, (Ni+красный шлам)Pd электродах при различных концентрациях п-НДА.

Таблица 2 – Изменение потенциала композитных электродов при внесении в раствор навески п-НДА

	E, B			
t, мин.	$C_{\text{п-HДA}} \cdot 10^{-2} \text{ моль/л}$			
	1,0	2,5	10,0	
Ni+боксит				
1	0,09	0,11	0,16	
5	0,10	0,15	0,18	
15	0,16	0,18	0,21	
25	0,18	0,20	0,23	
35	0,19	0,21	0,25	
45	0,20	0,22	0,26	
Ni+красный шлам				
1	0,07	0,09	0,14	
5	0,09	0,10	0,15	
15	0,10	0,11	0,16	
25	0,12	0,13	0,18	
35	0,14	0,16	0,20	
45	0,15	0,17	0,21	

Таблица 3 – Изменение потенциала модифицированных палладием композитных электродов при вынесении в раствор навески п-НДА

	Е,В			
t, мин.	$C_{\text{п-HДA}} \cdot 10^{-2} \text{ моль/л}$			
	1,0	2,5	10,0	
(Ni+боксит)Pd				
1	0,11	0,13	0,17	
5	0,17	0,20	0,26	
15	0,20	0,24	0,29	
25	0,24	0,29	0,33	
35	0,30	0,31	0,36	
45	0,31	0,32	0,37	
(Ni+красный шлам)Pd				
1	0.09	0,12	0,16	
5	0,14	0,16	0,20	
15	0,17	0,19	0,24	
25	0,19	0,21	0,27	
35	0,23	0,25	0,32	
45	0,24	0,26	0,33	

Из сопоставления полученных результатов можно сделать вывод, что скорость смещения потенциала увеличивается с ростом концентрации п-НДА до установления стационарного значения. Наибольшей адсорбционной способностью к п-НДА обладает Ni+боксит ($E_{\text{стац}}$ =0,26 B) композитный электрод и Ni+красный шлам ($E_{\text{стац}}$ =0,24 B). Величины смещения потенциала модифицированных электродов (Ni+боксит)Pd и (Ni+красный шлам) Pd больше, чем немодифицированных. При максимальной исследованной концентрации п-НДА 0,1 моль/л $E_{\text{стац}}$ (Ni+боксит)Pd композитного электрода равен 0,370 B и для (Ni+красный шлам)Pd составляет 0,330B.

В таблицах 4,5 приведены удельные стационарные токи электровосстановления п-НДА на изученных композитных электродах.

Таблица 4 — Удельные стационарные токи электровосстановления п-НДА на композитных электродах 0,14н КОН в 93% этаноле

	$J, mA/M^2$			
E,B	С _{п-нда} ·10 ⁻² , моль/л			
	1,0	2,5	10,0	
Ni+боксит				
0,2	0,3	0,4	0,4	
0,1	1,4	1,5	2,7	
0	2,0	3,4	4,2	
-0,1 -0,2	3,4	4,1	5,6	
-0,2	4,2	5,3	7,3	
Ni+красный шлам				
0,2	0,2	0,2	0,2	
0,1	1,0	1,3	1,5	
0	1,8	1,9	3,2	
-0,1 -0,2	2,1	2,4	5,1	
-0,2	3,0	3,5	6,7	

Таблица 5 – Удельные стационарные токи электровосстановления п-НДА на композитных электродах, модифицированных палладием, в 0,1н КОН в 93% этаноле

	$J, mA/M^2$			
E,B	С _{п-НДА} ·10 ⁻² , моль/л			
	1,0	2,5	10,0	
(Ni+боксит)Pd				
0,3	0,1	0,1	0,2	
0,2	0,8	1,0	1,3	
0,1	2,3	2,8	4,0	
0	4,1	5,3	6,5	
-0,1	5,0	6,8	9,2	
-0,2	9,5	10,1	12,0	
(Ni+красный шлам) Pd				
0,2	0,1	0,3	0,2	
0,1	1,2	2,0	2,8	
0	3,5	4,0	5,2	
-0,1	4,1	5,2	8,1	
-0,2	7,0	9,6	11,2	

Особенно токи возрастают при потенциалах выделения водорода 0-(-0,2)В, это свидетельствует о электрокаталитическом гидрировании π -НДА. На композитном электроде Ni+боксит стационарные токи заметно больше по сравнению с Ni+красный шлам. На модифицированных палладием композитных электродах (Ni+боксит)Pd и (Ni+красный шлам)Pd стационарные токи довольно близки $(12,0 \text{ и } 11,2 \text{ mA/m}^2)$.

Из приведенных экспериментальных данных по изучению электрохимического поведения Ni+боксит, Ni+красный шлам и (Ni+боксит)Pd, (Ni+красный шлам)Pd композитных электродов, следует, что наибольшая электрокаталитическая активность в реакции восстановления п-НДА наблюдается на Ni+боксит и (Ni+боксит)Pd композитных электродах.

Литература

1. Аубакиров Е.А. Разработка методов каталитического синтеза промышленноважных аминопродуктов. Автореф. дис. канд. хим. наук. –Алматы, 1996, -23с.

- 2.Постоянный технологический регламент № ДХЗТОС -1-129-86 производства паминодиэтиланилинсульфата (ЦПВ-1) от 06.08.1987.
- 3. Каирбеков Ж.К., Кутюков Г.Г., Жубанов К.А. // Тезисы докладов на респ. Конф. «Наука и технология», -Шымкент, 1993.
- 4. Жубанов К.А., Сагымбаева А.Е., Баишева Р.Г.,Гебель З.Н., Шин А.Е. Композитные электроды- катализаторы в реакции восстановления нитробензола // Вестник КазГУ, серия хим. -1996, №5-6. –С.228-230.

П-НИТРОДИЭТИЛАНИЛИННІҢ НИКЕЛЬ КОМПОЗИТТІ ЭЛЕКТРОДТА ЭЛЕКТРОТОТЫҚСЫЗДАНУЫ

Ж.К.Каирбеков, Е.А.Аубакиров, А.Е.Сагимбаева

Әл-Фараби атындағы қазақ ұлттық университеті, Алматы

Мақалада п-аминдиэтинилсульфаттың никель композитті электродтарда электрохимиялық синтезінің нәтижелері келтірілген. п-НДА-ның тотықсыздану реакциясында электрокаталитикалық активтілікті Ni+боксит және (Ni+боксит)Рд композитті электродтары көрсетті.

ELECTRORESTORATION p-NITRODIETILANILINA ON NICKEL COMPOSIT-ELECTRODES

Z.K.Kairbekov, E.A.Aubakirov, A.E.Sagimbaeva

Al-Farabi Kazakh national university, Almaty

In article results of electrochemical synthesis p-aminodietilanilinsulfata on nickel composit electrodes are resulted. It is established that the greatest electrocatalytic activity in restoration reaction p-NDA is observed on Ni+bosket and (Ni+ bosket) Pd composit electrodes.

УДК 541. 128; 541.13

ЭЛЕКТРОКАТАЛИТИЧЕСКИЙ СИНТЕЗ АРОМАТИЧЕСКИХ АМИНОВ НА НИКЕЛЕВЫХ КОМПОЗИТНЫХ ЭЛЕКТРОДАХ

Ж.К.Каирбеков, Е.А.Аубакиров, А.Е.Сагимбаева

Казахский национальный университет им.аль-Фараби, г.Алматы

B статье рассмотрен электрокаталитический синтез ароматических аминов на никелевых и модифицированных палладием композитных электродах. Показано, что с усложнением химического строения нитросоединений скорость их электровосстановления и выход аминов уменьшается в ряду $HB>o-H\Phi>n-H\mathcal{A}A$.

Электрохимическое восстановление нитрогруппы в алифатических и ароматических соединениях легко осуществляется на металлах, как с высоким, так и с низким перенапряжением водорода. Установлено, что на металлах с высоким перенапряжением восстановление протекает преимущественно по электронному механизму, а на металлах с низким перенапряжением – под действием атомарного водорода [1].

При изучении процесса электровосстановления нитробензола и о-нитрофенола на