әл-Фараби атындағы Қазақ ұлттық университеті, Жаңа химиялық технологиялар мен материалдар ҒЗИ, 050012, Қазақстан Республикасы, Алматы, Қарасай батыр көшесі, 95а

Иммобилденген поливинилпирролидин матрицасының Fe (III) комплексі қатысында С-Н байланысының активациясын ауадаға оттегімен н-деканды тотықтыру процесін кинетикалық және квантохимиялық әдістері арқылы зерттеу. РМЗ әдісінің жартылай эмпирикалық жанасуы жасалды, яғни Fe(3+) координациялық сферасына поливинилпирролидиннің екі сақинасы енгенде С-Н байланысының активациясы жоғары дәрежеде екені байқала. Бұл алынған кинетикалық нәтижеге сәйкес келеді.

STUDY OF THE ACTIVATION OF CH-BOND IN ALKANES ON THE IMMOBILIZED METAL COMPLEX CATALYSTS BY THE KINETIC AND QUANTUM-CHEMICAL METHODS

I.A. Shlygina, L.A. Shokorova, Zh.Kh. Tashmukhambetova, K.A. Zhubanov

Scientific Research Institute of new chemical technologies and materials of Kazakh NU by name of al-Farabi, 050012, Republic Kazakhstan, Almaty, Karasay-Butyr St., 95a

The activation of CH-bond over the Fe(III)-complexes, immobilized to the polyvinylpyrollidon matrix, is studied by kinetic and semi-empirical quantum-chemical methods for the process of oxidation of n-decane by molecular oxygen. In PM3 approximation model it is established that the activation of CH-bond run to the larger degree, when two rings of polyvinylpyrollidon enter in coordination sphere of Fe(3+). This corresponds to the obtained kinetic results.

УДК 542.91:547.213:662.767

СИНТЕЗ ОЛЕФИНОВ И КИСЛОРОДСОДЕРЖАЩИХ СМЕСЕЙ ИЗ С3-С4 АЛКАНОВ

С.А. Тунгатарова, М. Жумабек

АО «Институт органического катализа и электрохимии им. Д.В. Сокольского»

Исследовано окислительное превращение пропан-бутановой смеси в C_2 - C_4 олефины и кислородсодержащие композиции на полиоксидных катализаторах на основе гетерополисоединений Мо. Определено влияние технологических параметров и состава катализаторов на конверсию и селективность по целевым продуктам.

Окислительная конверсия алканов в этилен взамен использования нефтяного сырья представляет практический интерес, т.к. этилен и пропилен являются основой производства примерно 50% всех органических продуктов в химической промышленности. В настоящее время их годовой выпуск — это один из основных показателей потенциала промышленного развития. Известно, что нефтехимический потенциал многих стран оценивается по объему производства этилена и пропилена, которые являются базовым сырьем для производства полиэтилена, полипропилена, пластмасс и других продуктов. В литературе сообщается о росте цен на этилен и увеличении объема производства олефинов в Азии, Европе и Америке /1, 2/. Расширение производства и строительство новых нефтехимических комплексов идет также в России и Китае. Для Казахстана, имеющего огромные запасы природного газа, значительная часть которых сжигается в факелах, разработка и внедрение технологий переработки алканов является стратегической задачей.

Материалы и методы

Эксперименты по селективному окислению C_3 , C_4 алканов проводились на установке проточного типа при атмосферном давлении в трубчатом кварцевом реакторе, конструкция которого позволяет расположить фиксированный слой катализатора вблизи зоны быстрого охлаждения газовой смеси (так называемая «зона закалки») для ингибирования процессов,

приводящих к получению продуктов глубокого окисления, а также вывода кислородсодержащих продуктов конденсацией в растворитель (273-293 K). Окислителями служили кислород воздуха, CO_2 , N_2O . Реакционная смесь обогащалась парами воды в заданной концентрации, путём её захвата общим потоком при барботировании через термостатированую ёмкость с водой. В работе использованы катализаторы на основе гетерополикислоты 12 ряда Мо с центральным атомом P и её солей — элементов I, II групп и ряда переходных металлов.

Результаты и обсуждение

Установлено, что независимо от состава катализатора в процессе окислительного превращения пропан-бутановой смеси в присутствии кислорода воздуха образуются следующие соединения: кислородсодержащие (продукты парциального окисления) — спирты - CH_3OH ; C_3H_7OH -1,2; C_4H_9OH -1,2; формальдегид (CH_2O); кислоты уксусная и акриловая (следы); продукты окислительного дегидрирования — C_2 - C_4 олефины - C_2H_4 , C_3H_6 , C_4H_8 ; продукты крекинга — CH_4 , и глубокого окисления — CO_2 , а также H_2 . Соотношение продуктов, выходы и производительность определялись в значительной степени температурой реакции и временем контакта катализатора с реакционной средой. В области температур реакции 873-1073 К протекает два процесса окислительной конверсии C_3 , C_4 алканов: окислительное дегидрирование пропана и бутана с образованием C_2H_4 , C_3H_6 , C_4H_8 и H_2 и процесс крекинга. В результате крекинга возможно дополнительное образование этилена и пропилена с метаном, однако образования C_4H_8 в продуктах не наблюдалось.

Было изучено влияние времени контакта катализатора 15% $H_3PMo_{12}O_{40}/Al\cdot Si$ с реакционной смесью на выход целевых продуктов (C_2 - C_4 олефинов, C_1 - C_4 спиртов) в окислительном дегидрировании пропан-бутановой смеси при 973, 1073 K, таблица 1. При всех временах контакта от 0,1 до 2,0 с, выход олефинов C_2 - C_4 , в основном, имеет тенденцию к возрастанию с увеличением температуры от 973 до 1073 K. С ростом времени контакта от 0,1 до 2,0 с, выход C_2H_4 возрастал от 15 до 19,5%, некоторое уменьшение выхода до 9,3% было замечено только при $\tau = 1,2$ с. При 973 K выход C_3H_6 возрастал от 6,6 до 13,9% при увеличением времени контакта от 0,1 до 1,2 с, хотя при дальнейшем увеличением τ до 2 с выход пропилена уменьшался до 10,9%. Выход C_4H_8 в интервале 0,1 - 1,2 с увеличивается от 8,9 до 13,3% (T = 973 K), при $\tau = 2$ с бутилен практически исчезал.

При 973-1073 К изменение времени контакта в области 0,1 - 2,0 с существенно не влияло на выход C_1,C_3 спиртов. Выход CH_3OH при температуре 973 К при времени контакта 1,2 с составлял 1,6%, а C_3H_7OH - 1,2-0,8% при $\tau=0,1$ с. При более высоких временах контакта (5 с) при T=673 К получена смесь спиртов CH_3OH и C_3H_7OH .

Представляло интерес изучить влияние соотношения C_3 - C_4 углеводородов и кислорода в реакционной смеси на выход и селективность образования олефинов и кислородсодержащих соединений при окислительной конверсии пропан-бутановой смеси на 15% $H_3PMo_{12}O_{40}/AlSi$ катализаторе. При времени контакта 0,59 с было изучено влияние соотношения в реакционной смеси C_3 - C_4 углеводородов и кислорода воздуха на процесс окислительной конверсии пропан-бутановой смеси. Определено, что при соотношении 2,9 : 1 выход этилена достигает 19% (T = 1073 K). Максимальный выход пропилена — 14% зарегистрирован при 973 K, тогда как при τ = 0,29 с оптимальный выход C_3H_6 был получен при 1073 K. Наивысший выход бутилена из смеси C_3 - C_4 углеводородов приходился на соотношение C_3 - C_4 УВ : O_2 = 4 : 1, причем при 973 K он достигал 49,2% при селективности образования 98,5% и конверсии бутана 50%. Дальнейшее повышение температуры до 1073 K приводило к падению выхода C_4H_8 до 12,9% (C_3 - C_4 УВ : O_2 = 4 : 1).

Более высокие показатели по C_1 - C_3 спиртам наблюдались при соотношении C_3 - C_4 УВ : $O_2 = 2.9$: 1. Выход метанола при этом составлял 2,1% (T = 1073 K), а оптимальные выходы пропанола-1 и пропанола-2 равны 0,4% и 0,5%, соответственно, при T = 973 K.

Таблица 1 - Влияние времени контакта на выход и селективность по олефинам в процессе окислительной конверсии C_3 , C_4 алканов на 15% $H_3PMo_{12}O_{40}/AlSi$ катализаторе

W, ч ⁻¹	τ, c	Т, К	X, %	Выход, %		
			C ₃ H ₈	C ₂ H ₄	C ₃ H ₆	C ₄ H ₈
			C_4H_{10}			
36480	0,10	973	26,9	8,0	6,6	8,9
			18,3			
		1073	50,8	15,0	9,3	12,0
			38,2			
12680	0,29	973	63,6	6,4	11,6	12,0
			28,2			
		1073	71,6	15,0	12,0	14,0
			41,9			
6120	0,59	973	69,5	11,4	14,0	12,2
			50,4			
		1073	84,4	19,0	8,6	8,9
			44,2			
2960	1,20	973	47,7	6,7	13,9	13,3
			64,9			
		1073	72,7	9,3	13,3	11,3
			83,2			
1829	2,0	973	63,0	15,4	10,9	сл.
			56,3			
		1073	84,2	19,5	11,0	сл.
			82,4			
Примечание - V_{KT} – 1,5 см ³ , реакционная смесь, об. %: УВ : O_2 : N_2 = 37,8 : 13,1 : 49,1.						

Результаты выхода олефинов (C_2H_4 , C_3H_6 , C_4H_8) при варьировании содержания ГПК на носителе от 0,5 до 15% имели полиэкстремальный характер. Наивысший выход этилена 48,6% приходился на 1,5% $H_3PMo_{12}O_{40}/Al\cdot Si$ катализатор. Производительность образования этилена составляла 183,9 кг/кг ГПК·ч. Такую же зависимость можно пронаблюдать и в отношении пропилена. Его максимальный выход приходился на 1,5% $H_3PMo_{12}O_{40}/Al\cdot Si$ катализатор и составлял 25,8% при производительности, равной 97,8 кг/кг ГПК·ч. Наибольший выход бутилена наблюдался на 15% $H_3PMo_{12}O_{40}/Al\cdot Si$ катализаторе и составлял 14% при производительности 13,6 кг/кг ГПК·ч при T=1073 К. Однако на 1,5%-ном катализаторе бутилен синтезировался уже при температуре 873 К с выходом 12,3%. Производительность же при этом возрастала почти в два раза по сравнению с показателями на 15%-ном катализаторе и равна 24,6 кг/кг ГПК·ч.

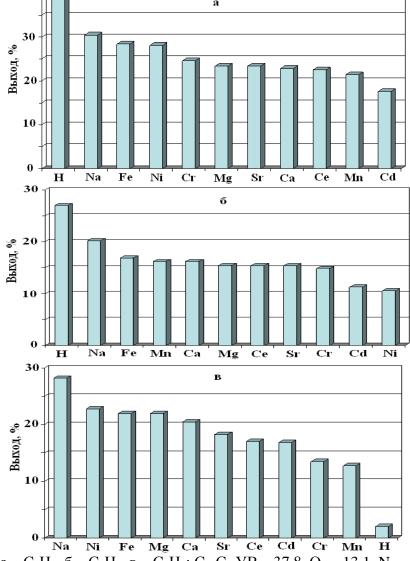
Следовательно, в отношении катализатора $H_3PMo_{12}O_{40}/Al\cdot Si$, используемого в процессе окислительного превращения пропан-бутановой смеси в олефины и C_1 - C_4 спирты, наибольшую активность проявляют низкопроцентные контакты. Оптимальными являются 1,0% и 1,5% нанесения активной фазы на носитель. Предполагается, что полиэкстремальный характер изменения каталитических свойств в окислении смеси пропан-бутан в зависимости от содержания ГПК на носителе и более высокая активность низкопроцентных нанесённых катализаторов обусловлены образованием на носителе наряду с кристаллитами аморфной фазы ГПК и проявлением явлений сильного взаимодействия в системе ГПК — носитель. Это подтверждено комплексом физико-химических методов исследования нанесённых катализаторов на основе ГПС и соответствующими литературными данными /3, 4/.

Известно, что существует ряд окислителей, которые активно влияют на показатели процесса окисления алканов. Влияние природы окислительного агента на превращение C_3 - C_4

алканов изучено на примере оптимального состава катализатора $-1,5\%H_3PMo_{12}O_{40}/Al\cdot Si$ при 873-1073 K, $\tau=0,29$ с. В качестве окислителей были исследованы N_2O , CO_2 и O_2 воздуха в присутствии водяного пара. Окислители по влиянию на выход C_2H_4 , C_3H_6 из пропанбутановой смеси образуют следующий ряд: $CO_2 < N_2O < O_2$ воздуха. При использовании в качестве окислителя кислорода воздуха на катализаторе $1,5\%H_3PMo_{12}O_{40}/Al\cdot Si$ были получены оптимальные выходы этилена и пропилена, равные 48,6 и 25,8%, соответственно. Производительность по этим продуктам также выше в случае использования в качестве окислителя O_2 воздуха и соответствует следующим значениям: C_2H_4 - 2758r/n Кт·ч, C_3H_6 - 1467 г/л Кт·ч. Эти результаты выше известных значений выходов и производительностей по целевым продуктам (C_2H_4 , C_3H_6), когда, например, в качестве окислителя используется водяной пар, либо водяной пар с кислородом.

В литературе имеется сведения, посвященные исследованию влияния модифицирующих добавок на активность гетерополисоединений в окислении алканов /5, 6/. Признанным фактом является то, что ГПС гораздо более стабильны по сравнению с ГПК, поэтому было интересно изучить влияние природы катиона-заместителя протона в $H_3PMo_{12}O_{40}$, нанесённой на алюмосиликат, на выход и производительность процесса окислительного превращения по целевым продуктам. Показано, что при проведении реакции на 1,5%ГПС/алюмосиликат выходы олефинов и спиртов растут с повышением температуры реакции от 673 до 1073К. Активность в образовании олефинов повышается в рядах фосформолибденовых солей следующих элементов (T = 1073 K, B%), рисунок 1:

 $C_2H_4: Cd(17,6) < Mn(21,4) < Ce(22,5) < Ca(22,8) < Sr(23,2) < Mg(23,4) < Cr(24,6) < Ni(28,1) < Fe(28,4) < Na(30,4) < \Gamma\Pi K(48,6),$


 $C_3H_6: Ni(10,5) < Cd(11,3) < Cr(14,9) < Sr(15,4) \sim Ce(15,4) \sim Mg(15,4) < Mn(16,2) \sim Ca(16,2) < Fe(16,9) < Na(20,2) < \Gamma\Pi K(25,8),$

 C_4H_8 : $\Gamma\Pi K(c\pi.) < Mn(12,7) < Cr(13,5) < Cd(16,9) < Ce(17,1) < Sr(18,3) < Ca(20,5) < Mg(22,0) ~ Fe(22,0) < Ni(22,8) < Na(28,2).$

Установлено, что оптимальной активностью по синтезу C_2 - C_4 олефинов из C_3 - C_4 алканов обладает 1,5% $Na_3PMo_{12}O_{40}$ /алюмосиликат.

На данном катализаторе максимальные выходы и производительности достигаются при $T=1073~\rm K$. Для C_2H_4 выход равен 30,4%, производительность - 1724,5 г/л $\rm Kr\cdot q$, для $\rm C_3H_6$ выход составляет 20,2%, производительность - 1146,0 г/л $\rm Kr\cdot q$. Однако выход и производительность процесса по этилену и пропилену на нанесённых ГПС более низкие, чем на аналогичных гетерополикислотных катализаторах. Другая картина прослеживается в отношении бутилена, выход и производительность которого на нанесенных ГПС многократно превышают таковые на аналогичном катализаторе из ГПК (выход $\rm C_4H_8$ равен 28,2%, а производительность- 845,0 г/л $\rm Kr\cdot q$ при $\rm T=1073~\rm K$). Также и синтез $\rm C_1\text{-}C_4$ спиртов целесообразнее проводить на нанесенных ГПС, на которых показатели процесса выше, чем на гетерополикислоте.

Установлено, что для синтеза олефинов предпочтительно использовать катализаторы из ГПК $H_3PMo_{12}O_{40}$, в которых носителем является алюмосиликат, а для получения кислородсодержащих продуктов более подходящим носителем является силикагель. Катализаторы на SiO_2 из ГПС 12 ряда W и Мо проявляют более высокую активность в синтезе из CH_4 метанола, поскольку SiO_2 обладает более выраженными кислотными свойствами по сравнению с алюмосиликатом. Отсюда следует, что эффект его положительного влияния на образование кислородсодержащих продуктов, видимо, связан с усилением кислотных свойств катализатора.

ho Na Ni Fe Mg Ca Sr Ce Cd Cr Mn H Обозначения: $a-C_2H_4$, $\delta-C_3H_6$, $B-C_4H_8$; C_3-C_4 YB-37,8, $O_2-13,1$, $N_2-49,1$, об.%, V=12680 $ext{ ч}^{-1}$, au=0,29 c, T=1073 K.

Рисунок 1 — Зависимость выхода олефинов от природы катионов-заместителей протона в 1,5% $H_3PMo_{12}O_{40}/AlSi$

Литература

- 1. Арутюнов В.С. Роль газохимии в инновационном развитии России // Газохимия. 2008. № 1 (0). С.10-21.
- 2. Van Camp C. The future of the petrochemical industry in Europe // Catalysis Today. 2005. Vol.106, № 1-4. P.15-29.
- 3. Давыдов А.А., Гончарова О.И. Применение ИК-спектроскопии для исследования катализаторов на основе гетерополимолибденовых соединений, нанесенных на оксиды // Успехи химии. 1993. Т.62, №2. С.118-134.
- 4. Савельева Г.А., Сасс А.С., Досумов К., Оразымбетова С.Д., Бекбатырова Г.М. Структурные превращения нанесенных гетерополисоединений в реакции окислительной конверсии алканов под влиянием среды // Механизмы каталитических реакций: VI Российская конф. –Новосибирск, 2002. С.284-285.
- 5. Mizuno N., Tateishi M., Iwamoto M. Enhancement of catalytic activity of $Cs_{2.5}Ni_{0.08}H_{0.34}PMo_{12}O_{40}$ by V^{5+} -substitution for oxidation of isobutane into methacrylic acid // Applied Catalysis A: General. 1994. Vol.118, No. 1. P.L5-L10.
- 6. Крылов О.В. Каталитическое окисление // Кинетика и катализ. 2002. Т.43, №2. С.310-316.

С₃-С₄ АЛКАНДАРДАН ОЛЕФИНДЕР МЕН ОТТЕК ҚҰРАМДАС ҚОСПАЛАРДЫҢ СИНТЕЗІ

С.А. Тунғатарова, М. Жумабек

Мо гетерополиқосылыстарының негізіндегі полиоксидті катализаторларда пропанбутан қоспасының C_2 - C_4 олефиндер мен оттек құрамдас композицияларға дейін тотығу айналулары зерттелді. Мақсатты өнімдердің конверсиясы мен талғамдылығына технологиялық параметрлер мен катализаторлар құрамының әсері анықталды.

SYNTHESIS OF OLEFINS AND OXYGEN CONTAINING MIXTURES FROM C₃-C₄ ALKANES

S.A. Tungatarova, M. Zhumabek

Oxidative conversion of propane-butane mixture into C_2 - C_4 olefins and oxygen-containing compositions over polyoxide catalysts on a basis of Mo heteropoly compounds was investigated. The influence of technological parameters and composition of catalysts on conversion and selectivity on target products were determined.

УДК 546.92:546.96:542.973:542.943:547.211

Pt-Ru КАТАЛИЗАТОРЫ НА СОТОВЫХ БЛОЧНЫХ НОСИТЕЛЯХ ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ И ПАРОКИСЛОРОДНОЙ КОНВЕРСИИ МЕТАНА

С.А. Тунгатарова, Т.С. Байжуманова

АО Институт органического катализа и электрохимии им. Д.В.Сокольского

Представлены результаты исследования процессов селективного каталитического окисления и парокислородной конверсии метана на низкопроцентных катализаторах на основе благородных металлов, нанесенных на металлические блочные носители. Определено влияние состава и оптимальных концентраций катализаторов на блоке на эффективность в реакциях окисления CH_4 в синтез-газ.

При переработке природного газа первой стадией практически всегда является получение синтез-газа, из которого в дальнейшем получают различные полезные химические продукты /1-3/. Активность в области разработки и реализации технологий конверсии природного газа в синтез-газ растет, однако выход на массовый рынок остается главной проблемой технологий, которые остаются достаточно дорогостоящими. Основные усилия сводятся к снижению затрат на стадии получения синтез-газа, которые составляют примерно 60% от общих затрат. Основным современным методом получения синтез-газа является окислительная конверсия метана. На сегодняшний день известны 3 способа осуществления этого процесса: паровая конверсия, углекислотная конверсия и парциальное окисление /2/. Есть также и комбинации вышеперечисленных реакций, например, парокислородная конверсия, пароуглекислотная конверсия. В статье представлены данные по селективному каталитическому окислению (СКО), паровой конверсии (ПК) и парокислородной конверсии (ПКК) метана в синтез-газ.

Материалы и методы

Активность восстановленных 0,2, 0,5 и 1,0% Pt-Ru(2:1)/2%Ce/ $(\theta+\alpha)$ -Al₂O₃ катализаторов,