Заключение

Определены содержание, состав и физико-химические характеристики органической части нефтебитуминозных пород месторождений Беке-Таспас и Карамурат, выделенной методом экстракции. Показано, что наиболее приемлемым способом их переработки является окисление с получением битумов. Установлена возможность получения дорожных битумов путем окисления органической части нефтебитуминозных пород месторождений Беке-Таспас и Карамурат. Органическая часть НБП месторождения Карамурат более благоприятна в качестве сырья для получения окисленных битумов по сравнению с органической частью НБП месторождения Беке-Таспас. Установлены оптимальные условия проведения процесса окисления органической части нефтебитуминозных пород месторождений Беке-Таспас и Карамурат: температура 250 °C, время 3 часа, расход воздуха 8 л/мин на 1 кг сырья.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ МҰНАЙБИТУМДЫ ЖЫНЫСТАРЫНЫҢ ОРГАНИКАЛЫҚ БӨЛІГІНЕН БИТУМ АЛУ

Тілеуберді Е., Оңғарбаев Е.Қ., Тулеутаев Б.К., Мансұров З.А.

Әл-Фараби атындағы Қазақ Ұлттық Университеті Жану проблемалары институты Алматы, Қазақстан

Бұл еңбекте жол-құрылыс жұмыстарына қажетті битумды мұнайбитуды жыныстардан алу мәселелері қарастырылған. Осы мақсатта зерттеу нысаны ретінде Беке-Таспас және Қарамұрат кен орынының мұнайбитумды жыныстары таңдап алынды.

PRODUCTION OF BITUMEN FROM ORGANIC PART OF OIL-BITUMEN ROCK OF THE REPUBLIC OF KAZAKHSTAN

<u>Tileuberdi E., Ongarbayev E.K., Tuleutaev B.K., Mansurov Z.A.</u>

Institute of Combustion problems of al-Farabi Kazakh National University, Almaty, Kazakhstan.

In this article production of bitumen from oil-bitumen rocks is proposed. As objects of research oil-bitumen rocks of the Beke-Taspas and Karamurat fields are used.

УДК 547. 592: 665.77

РЕЗУЛЬТАТЫ УКРУПНЕННЫХ ИСПЫТАНИЙ ПРОМЫШЛЕННЫХ КАТАЛИЗАТОРОВ МНХ, НХ, СКН-39Н В ПРОЦЕССЕ ГИДРИРОВАНИЯ БУТИНДИОЛА-1,4

Ж.К. Каирбеков, К.К.Катаева, М.З.Есеналиева, Ж.К Мылтыкбаева

Казахский национальный университет им. аль-Фараби, Алматы

Работа посвящена проведению укрупненных испытаний процесса гидрирования бутиндиола-1,4. Результаты укрупненных испытаний показали, что при использовании сплавного СКН-39 катализатора в процессе гидрирования бутиндиола-1,4 повышается селективность процесса и чистота продукта..

Изучение кинетических закономерностей гидрирования бутиндиола-1,4 важно в практическом отношений, так как эта реакция заложена в основу промышленного процесса получения бутандиола-1,4.

Для развития современного производства необходимо разработать и внедрять в производство эффективные и стабильные катализаторы для органического синтеза. Разработка высокоэффективных стационарных катализаторов для процесса гидрирования на уровне современных требований в промышленности является важной, в то же время сложной технической задачей, решение которой приводит к увеличению выхода бутандиола-1,4 и в целом эффективности процесса его получения. Из-за особых требований к чистоте получаемых веществ для проведения данного процесса, необходимы высокоэффективные катализаторы /1-3/. В связи с этим изучение процесса гидрирования бутиндиола на модифицированных никелевых катализаторах является актуальным /4/.

Лабораторные исследования показали, что при гидрировании бутиндиола-1,4 наиболее высокую активность, селективность и стабильность проявляют сплавной катализатор СКН-39, наименьшую МНХ и НХ /4/. Катализатор из сплава СНК-39 в настоящее время имеет промышленное применение в ряде гидрогенизационных процессов, таких как гидрирование масляных альдегидов и др. В связи с этим для скорейшего внедрения сплавного катализатора СКН-39, являющегося также высокоэффективным катализатором в процессе гидрирования бутиндиола-1,4, нами были исследованы каталитические свойства на пилотной установке. В таблицах 1-3 приведены результаты укрупненных испытаний катализаторов МНХ, НХ и СКН-39.

Таблица 1 - Результаты укрупненных испытаний различных катализаторов МНХ, в процессе гидрирования бутиндиола-1,4. Условия опыта: Объемная скорость сырья -1 л/ч, расход водорода -3 НМ/ч, рН-7,0-9,

Продолжи-	Темпера-	Объемная	Расход	Концентрация						Выход	
тельность	тура	скорость	Водо-	БИД в	Состав продуктов					продукта	
испытанй,		y ⁻¹	рода	исходном	гидрирования,%					исходного	
Ч	t, °C		HM^3/H	сырье, %						БИД, % масс	
					бутанол	OMA	БАД	БЕД	БИД	Бутанол	БАД
24	90	0,8	0,2	16,9	1,20	отс.	12,6	0,23	след	7,1	74,8
80	90	0,8	0,2	16,9	1,65	отс.	11,3	0,27	0,10	9,8	66,9
160	90	0,8	0,2	16,9	2,17	0,31	11,5	0,13	отс.	12,9	68,4
200	90	0,8	0,2	16,9	1,97	0,47	11,3	0,2	отс.	11,7	68,4

Таблица 2 — Результаты укрупненных испытаний промышленного катализатора HX в процессе гидрирования бутиндиола-1,4. Условия опыта: объемная скорость сырья -1 $\pi/4$, расход водорода — $\pi/4$

Продолжи-	Темпе- Со		став исходного		Состав продуктов			Выход продукта от			
тельность,ч	ратура	сырья, %		масс.	гидрирования		% масс	исхо		одного	
	Реактора	БИД	БАД	Итого в	Бутанол	анол БАД БЕД		БИД %		БИД+БАД, %	
	t, °C			водном				Бутан	БАД	Бута	БАД
				растворе				ОЛ		нол	
80	90	14,93	32,30	47,23	0,52	42,65	0,18	3,5	69,3	1,1	90,3
80	90	то же	то же		1,06	43,05	0,15	7,1	72,0	2.2	91,1
112	110	«»	«»	«»	2,13	42,53	0,18	14,3	69,1	4,5	90,0
110	110	15,36	28,07	43,43	2,11	35,89	0,18	13,7	50,9	4.9	82,6
208	110	то же	то же		1,91	32,92	0,13	12,4	31,6	4.4	75,8
256	120	17,17	32,65	49,82	2,57	38,30	0,09	15,0	32,9	5.2	76,9
288	120	то же	то же		2,78	34,14	0,34	16,2	8,7	5,6	68,5

Таблица 3 - Результаты укрупненных испытаний промышленного катализатора СКН-39 в процессе гидрирования бутиндиола-1,4

Продолжи-	Темпера	Объем	Расход	Концентрация						Выход	
тельность	-тура	ная	водорода	БИД в	Состав продуктов					продукта	
испытаний			HM^3/H	исходном	гидрирования, %					исходного	
Ч	t, ⁰ C	$\mathbf{q}^{\text{-}1}$		сырье, %			БИД, % масс				
					Бута-	OMA	БАД	БЕД	БИД	Бутанол	БАД
					нол						
24	80	0,6	1,0	14,3	0,11	отс.	13,7	0,16	0,04	3,1	97,7
80	80	0,6	1,0	14,4	0,12	отс.	14.3	0,07	0,02	4,3	99,4
112	80	1,5	3,0	13,9	0,10	отс.	13,7	следы	следы	5,3	99,1
160	80	1,5	3,0	30,0	0,17	отс.	27,7	следы	отс.	7,3	92,5
248	60	1,0	0,2	15,0	1,67	отс.	14,4	следы	отс.	11,1	96,0
320	100	1,0	0,2	15,0	1,20	0,27	13,0	0,26	0,25	8.0	86,9
БАД – бутандиол-1,4; БИД - бутиндиол-1,4; БЕД – бутендиол-1,4; ОМА – оксимаслянный альдегид											

Из данных таблицы 1-3 видно, что селективность по бутандиолу-1,4 при гидрировании бутиндиола-1,4 на сплавном катализаторе СКН-39Н составила 86,9 %, что на 18 % выше, чем у промышленного катализатора МНХ. В аналогичных условиях работы последнего катализатора селективность по бутандиолу равна 68,4 %. При этом продолжительность работы катализатора СКН-39 составило 320 ч., а время работы промышленного катализатора МНХ значительно меньше, оно составляло 200 ч. Хроматографический анализ продуктов гидрирования бутиндиола-1,4 показывает, что выход бутанола, являющегося побочным продуктом производства, с увеличением продолжительности процесса гидрирования в наибольшей степени возрастает на катализаторах МНХ (никель/каолин) и НХ (никель/Сг₂О₃). Так, при продолжительности процесса 288 часов выход бутанола на катализаторе НХ составляла 16,2, а на СКН-39 - 8,0 %. В то же время на катализаторе МНХ выход бутанола повышается до 30,6 % при гидрировании бутиндиола в течение 200 часов. Испытания показали, что выход бутанола при работе со сплавным катализатором СКН-39 растет значительно медленнее, т.е с 2,3 до 8,0 %. Сравнивая данные сплавного катализатора СКН-39 с промышленным катализатором МНХ явно наблюдается преимущество первого катализатора. Применение их в производство позволяет увеличить селективность процесса по бутандиолу на 18-27 %, а стабильность в 1,5-2 раза. Катализатор СКН-39 обладает более высокой гидрирующей способностью, чем промышленный МНХ. При гидрировании бутиндиола-1,4 на сплавных катализаторах с низкой подачей водорода в гидрогенизате отсутствовал у-оксимасляный альдегид, а бутендиол – промежуточный продукт и бутиндиол - исходное сырье имелись или отсутствовали. В то же время в гидрогенизате, полученном после гидрирования бутиндиола-1,4 на промышленном катализаторе , присутствовали уоксимасляной альдегид, БЕД и БИД.

Таким образом при гидрировании бутиндиола на катализаторе СКН-39 производительность процесса повышается в 1,5-2,0 раза, селективность — на 15-30 %, а целевой продукт обладает более высоким качеством (чистота продукта повышается не менее, чем на 2-3 % по сравнению с промышленным катализатором МНХ).

Литература

- 1. Колесников М.И. Катализ и производство катализаторов / М.И. Колесников. М.: Техника, 2004.-400 с.
- 2. Sereda B. Application of activation of substrate by aluminium and copper for increase of adhesive durability of sheetingsreceived in self-propagating high-temperature synthesis conditions / B. Sereda, S. Sheyko, I. Kruglyak, Y. Belokon' // 10 thInternational Conference on the Science and Technology of Adhesion and Adhesives. Oxford, UK, 2008. P. 437-439.
 - 3. Григорян Э. А., Мержанов А. Г. Катализаторы XXI века / Э.А.Григорян, А. Г.

Мержанов // Наука-производству. -1998, -№3 (5), -ℂ. 30-41.

4. Каирбеков Ж.К., Катаева К.К., Мылтыкбаева М.З. Гидрирования бутиндиола-1,4 до бутанндиола-1,4 на свелетных никелевых катализаторах Ті,Мо. ВестникКазНУ, Сер.хим. -№ 1 (53). -2009. – С.32-34.

БУТИНДИОЛ-1,4 ГИДРЛЕУ ПРОЦЕССІНЕ МНХ, НХ, СКН-39Н ӨНДІРІСТІК КАТАЛИЗАТОРЛАРЫ ӨАТЫСЫНДА КЕҢЕЙТІЛГЕН СЫНАҚ ЖҮРГІЗУ НӘТИЖЕЛЕРІ

Ж.Қ.Қайырбеков, Қ.Қ.Қатаева, Ж.К.Мылтықбаева, М.З.Есеналиева

Берілген жұмыста лабораториялық зерттеу негізінде бутиндиол-1,4 гидрлеу процессіне кеңейтілген сынақ откізілді. Кеңейтілген сынақ қорытындысы бойынша СКН-39 катализаторының, бутиндиола-1,4 гидрлеу процесінде, талғампаздығы мен шыққан өнімнің тазалығы жоғары екені анықталды.

CARRYNG OUT OF THE INTEGRATED TESTS OF HYDROGENATION PROCESS OF BUTINDIOL-1.4

Z.K.Kairbekov, K.K.Kataeva, M.Z.Esenalieva, Z.K.Myltykbaeva

The present work is devoted carrying out the integrated tests I am based on laboratory research. Results of the integrated tests have shown that at use floatable CKN-39 the catalyst in the of hydrogenation butindiol-1.4 selectivity of process raises.

УДК 547. 592: 665.77

ПРИМЕНЕНИЕ ВОДЯНОГО ПАРА В ПРОЦЕССАХ ГИДРОЧИСТКИ И ГИДРОДЕАЛКЛИРОВАНИЯ

Ж.К. Каирбеков, Н.Т. Смагулова, Т.Ш. Досмаил, М.З. Есеналиева, Ж. Мунайтпасов

әл-Фараби атындағы Қазақ ұлттық университеті

Установлено влияние водяного пара на выход химических продуктов гидродеалкилирования смеси фракций смолы с т.кип. 180-230⁰С и сырого коксохимического бензола.

При предварительной гидроочистке коксохимического сырья, содержащего нафталин, под давлением водорода около 4,0 МПа может происходить частичное гидрирование нафталина в декалин и тетралин, которые на высокотемпературной стадии процесса могут подвергаться деструкции, что приведет к потери ценного химического продукта.

В [1] показано, что при гидрировании 20 %-ного раствора нафталина в бензол последений не подвергается изменениям, тогда как нафталин на 68,7% превращается в тетралин. В то же время отмечается, что при каталитическом гидрировании раствора бензола и 2-метилнафталина степень превращения последнего в 2- метилтетралин составила 45 %, а в присутствии водяного пара (20% от сырья) – 20,0 %. Бензтиофен (примесь 0,5 %) количественно превращается в этилбензол в обоих случаях. Делается вывод о том, что водяной пар, блокируя активные центры катализатора, препятствует протеканию реакций гидрирования нафталинового кольца, но не влияет на гидрогенолиз бензтиофена.

Для определения влияния добавок 20,0 % водяного пара на процесс