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Polymeric betaines containing long alkyl chains C H,, C H,, C H._ and C H._ were
synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA).
They were characterized by FTIR, *C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential
measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in
aromatic hydrocarbons (benzene, toluene, o-xylene) and formed colloid solutions in aqueous KOH.
In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as
polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions
of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups
were studied as a function of pH. Anomalous low values of the isoelectric point (IEP) of amphoteric
macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size
of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules
in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in
both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural
organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic
polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in
comparison with commercial available ethylene-vinylacetate copolymers (EVA).
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¥3biH CH,, C H,, C H. . n CH,_ ankun TisbektepiHeH TypaTblH nonumepnik 6etamHaep
aNKMNAMUHOKPOTOHATTapAaH KIHE METaKpWA KbIWKbIAbIHAH Muxasnb peakuuacbl 6oWibliHWa
cuHTesgenai. Onap UK-dypobe, AMP 3C cnektpockonua, ACK, /1K, [MX, kpno-M3IM, Buckosnme-
TPUA }KaHe A3eTa-noTeHuManapl enwey agictepimeH cunatrangpl. lonnmepnep tonbiFbimeH AM®A,
Trd xaHe AMC, apTbliaii apomaTTbl KemipcyTekTepae (6eH30n, TONY0N, 0O-KCUON) epusi KaHe
KOH cynbl epiTiHaiciHoe konnonatbl epiTiHai Ty3esi. Joaeunn-, TeTpageumn-, rekcageunn- xaHe
oKTageunnbai Tontapbl 6ap rmapodobTbl-moanduumpnerreH nonvbetanHaep AMCO kaHe KOH
cynbl epiTiHainepiHae pH opTacbiHa Tayenai 3eptrengi. pH 2.7-3.4 o6binbiCcbiHAA M303M1EKTPAIK
HYKTeHiH (M3H) aHomanbai TemeHri MaHi Tabblngbl. /1K manimeTiHe caiikec MakpoMoneKynanapabliH,
MenLwepi CyMbINTKAH caibiH Kiwiperieai. AmdoTepni MakpomonekynanapablH, A3eTa-noTeHumansl
LOMCO canbicTbipFaHaa cynibl epiTiHaiae »ofapbl 6onaapl. Kpno-NIM Hatuxkenepi AMCO xaHe KOH
epiTiHAiNepiHAe Aie MUKPOHAbI XKXaHe HaHOMenLwep i Be3nkynaap 6ap ekeHiH kepcetti. LMCO xaHe
CyAa Be3VKYyNAAPAbIH, KYPbUIbIMAbIK Ty3inyi TankpinaHaapl. MapaduH KUHanyblH MHTMbUpneywi
sdpdekTici KoHe Kofapbl napaduHAi MyHaUNapAblH, aKKbIWTbIFbIHbIH, a3aloblH  TOMEHAETy
KOMMEPLMANBIK  KO/KETIMAI  COMONMMEpP  3TU/IEeH-BUHWANaLeTatneH (IBA) canbicTbipFaHaa
rmapodobTbl nonnbeTanHAepAiH KaTbICbIHAA KaKCbl.

TyitiH ce3aep: nonumepnik 6eTanHaep; BeanKyananap; MULENNANAP; aKKbILITBIKTbI a3aiTaTbiH
fenpeccaHTrap.
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" 12H25' C14H29' c16H33

1gH5,, CUHTE3WPOBaHbI M3 A/IKMNAMUHOKPOTOHATOB M METaKPW/IOBOW KUCIOTbI MO Peakuun
Muxasna. OHu oxapakTepm3oBaHbl metogamu MK-Oypbe, AMP 3C cnektpockonum, ACK, AC, TTIX,
Kpno-MN3M, BUCKO3MMETPUN U U3MepeHnem aaeTa-noTeHumana. Noammepbl NONHOCTbIO PaACcTBO-
pumbl B8 AM®A, TTP 1 AMCO, 4acTU4YHO PacTBOPMMbI B apOMaTUYECKUX yraeBogopoaax (beHson,
TONYON, 0-KCUNoN) 1 06pasyroT KoNNouaHbIE pacTBopbl B BOAHOM pacTBope KOH. B pactBopax Bo-
aHoro KOH n AAMCO ruapodobHo-moandUuLmpoBaHHble NonnbeTanHbl, cogepalime A0AeL M-,
TeTpajeunn-, rekcaleunn- 1 oKTageunnbHble rpynnbl, U3ydeHbl B 3aBUCUMOCTH OT pH. HaiiaeHbl
QHOMaNbHO HU3KME 3HAYEeHWUA M303/1eKTpuyeckol Touku (MIT) B obnactm pH 2.7-3.4. CornacHo
AaHHbIM AJ1C cpefHUe pasmepbl MaKpOMOIEKY T UMEIOT TEHAEHLMIO K CHUXKEHMIo ¢ pasbasrieHvem.
[3eTa-noteHuman amdoTepHbIX MaKPOMO/NEKYN B BOAHOM pacTBOpPE HaMHOrO Bbllle, Yem B
AMCO. Pesynbratbl Kpuo-NOM nokasanm Ha CywecTBOBaHME MUKPOHHbIX M HaHOPa3MepHbIX
BE3MKy/N Kak B pactsope KOH, Tak u B MCO. Obcy:KAaeTca CTPYKTYpHaA opraHvM3aumsa Be3uKyn
B Boge v AMCO. UHrnbupytowmii apdekT napadrUHOOTNOKEHUA U CHUXKEHUE NOTepU TeKyyecTu
BblCOKONapaduHUCTbIX HedTel B NpUcyTCTBUMN rMapodOB6HbIX NOIMBETanHOB Nyylle, YemM B Cyvae
KOMMEpPYECKM AOCTYMNHOro ConosiMmepa sTuaeH-sMHunavetat (3BA).

MonumepHble 6eTauHbl, COAep)Kalime LJIMHHbIE ankwuibHble uenu C

KnioueBble cnosa: nonnmepHble 6eTanHbl; BE3UKybl;, MUUENNbl; AenpeccaHTbl noTtepu
TeKy4yecTun.



http://bulletin.chemistry.kz/

CHEMICAL BULLETIN

of Kazakh National University

N

XABAPUWbI

BECTHMK

UDK 541.64+678.744

http://dx.doi.org/10.15328/cb645

Synthesis and characterization of hydrophobically modified

polymeric betaines

2Shakhvorostov A.V., “2Nurakhmetova Zh.A., *?Tatykhanova G.S.*,

3Nuraje N., “?Kudaibergenov S.E.

Laboratory of Engineering Profile, K.I. Satpayev Kazakh National Technical University, Almaty, Kazakhstan

%Institute of Polymer Materials and Technology, Almaty, Kazakhstan

3Department of Chemical Engineering Texas Tech University, Texas, USA

*E-mail: gulnur-ts81@yandex.ru

1. Introduction

Hydrophobic polyampholytes (HPA) are the unique

of macromolecules containing both ionizable and
hydrophobic moieties in the main (or side) chain [1-3]. The
structure, morphology, hydrodynamic and conformational
properties of HPA depend on phase conditions (solid or
liquid) and the influence of external factors such as pH, ionic
strength, temperature, water-organic solvents etc. Two main
concurring forces — electrostatic repulsion (or attraction) and
hydrophobic interactions — are responsible for existence of
macromolecules in amorphous, ordered, expanded, coiled and
globular states. Specific properties of HPA are competition of
“antipolyelelctrolyte” (expansion of macromolecular chain) and
hydrophobic effects (aggregation) upon addition of salts.

One of the most interesting solution properties of HPA
described by authors [4-5] is their ability to self-assemble into
“schizophrenic” micelles, lamellar aggregate, vesicles and
hydrogels.

The literature survey reveals that HPA are less studied
than ordinary polyampholytes composed of only acidic
and basic groups. In the pioneering works [6], a series of
HPA were prepared by amidation of various alternating
maleic anhydride copolymers of methyl, propyl and butyl
alkyl vinyl ethers with N,N’-dimethyl-1,3-propanediamine.
Acomb-like polyampholytes of a-olefins (CH,, — C H,) and
N,N-dimethylaminopropylmonoamide of maleic acid were
synthesized by Tanchuk et al. [7-9]. Specific properties of HPA
are solubilization of dye molecules in hydrophobic domain and
gelation of aqueous solution upon increasing of temperature.

Laschewsky et al. [10-17] comprehensively described the

synthesis and characterization of “head-type”, “mid-tail type”

class

and “tail-end type” zwitterionic polysoaps, which combine
the advantages of the behavior of bipolar ions and micellar
polymers.

Acrylamide-based hydrophobically modified polysulfo- and
carbobetaines containing N-butylphenylacrylamide and varying
amounts of the 3-(2-acrylamido-2-methylpropanedimethyl-
ammonio)-1-propanesulfonate (AMPDAPS) or the
4-(2-acrylamido-2-methylpropyldimethyl-ammonio)butanoate
(AMPDAB) were synthesized by micellar copolymerization [2].

Both “antipolyelectrolyte” effect and aggregation of
hydrophobic groups leading to an increase of the hydrodynamic
size upon an increase of salt concentration are observed. Both
electrostatic attractions between ammonium and carboxylate
groups and hydrophobic interactions between long flexible
spacers are the driving forces of superstructure formation [18]

Hydrophobically associating polyampholytes may be
effective viscosity enhancers in high salinity media, as they
combine properties of hydrophobically modified neutral
polymers and polyampholytes making them useful in sewage
treatment, flocculation and oil recovery processes [19,20] as
pour point depressants and inhibitors of wax deposition [21-22].
HPAs were synthesized through direct polymerization of sodium
styrene sulfonate and vinylbenzyl dimethylhexadecylam-
monium chloride [23]. In order to develop protein nanocarriers,
HPA were synthesized by the succinylation of e-poly-I-lysine
with dodecyl succinic anhydride and succinic anhydride [24].
Self-assembled HPA form nanoparticles through intermolecular
hydrophobic and electrostatic interactions when dissolved in
aqueous media.

A novel hydrophobically associating polyampholytes of
poly(AM/AA/AMQC12) were synthesized by the free radical
copolymerization of acrylamide (AM), acrylic acid (AA), and dime-
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12 Synthesis and characterization of hydrophobically modified...

thyldodecyl(2-acrylamidoethyl)ammonium bromide (AMQC12)
in water without any surfactants (named AAQ series) [25].

Polyampholytes containing betaine units and side cetyl
radicals were obtained by modification of poly(4-vinylpyridine)
with bromocarboxylic acids and alkyl bromides [26]. Their
complex formation with liposomes was investigated. The
insertion of side cetyl radicals into polybetaine molecules
stabilizes their complexes with liposomes in the presence of
salts. The cytotoxicity of the synthesized polyampholytes is
one to two orders of magnitude lower than that of a cationic
polymer with the same degree of polymerization.

Hydrophobically modified polysulfobetaines containing
3-[N-(2-methacroyloylethyl)-N,N-dimethylammonio]-
propane sulfonate and varying amounts of the hydrophobic
monomer stearyl methylacrylate were synthesized by micellar
copolymerization [27]. The dynamic laser light scattering
measurement revealed that both zwitterionic and hydrophobic
associations were important in copolymer aggregation.

A series of amphoteric hydrophobic-associative flocculants
were used to flocculate the montmorillonite suspensions [28].
The “antipolyelectrolyte effect” of polyampholyte and
hydrophobic-associating interaction can endow excellent
flocculation efficiency and salt tolerance.

The preparation and characterization of polymeric
betaines based on aminocrotonates was reviewed in [29].
Stereochemistry and tautomeric transitions in aminocrotonates
as well as kinetics and mechanism of formation of linear and
crosslinked polybetaines proceeding via Michael addition
reaction were outlined. As continuation of previous studies in
the present paper we describe the synthetic protocol, physico-
chemical properties and application aspect of hydrophobically
modified polymeric betaines as pour point depressants.

2. Experimental

2.1 Materials

Acetoacetic ester (ethyl acetoacetate) (99%), dodecylamine
(99%), tetradecylamine (99%), hexadecylamine (99%),
octadecylamine (99%), MAA (99%), and azoisobutyronitrile
(AIBN) were purchased from Aldrich. MAA was purified by
distillation under the low pressure and kept in refrigerator.
Reagent grade solvents acetone, DMF and DMSO purchased
from Aldrich were used. Sodium dodecylsulfonate (SDS) is the
product of Aldrich with purity of 99%. The mixture of waxy
crude oil Buzachi-Mangyshlak (67:33 wt.%) and heavy oil of
Mangyshlak (Western Kazakhstan) that are transported through
main pipeline were selected for testing the efficiency of polymer
additives as oil depressants. Highly viscous and highly paraffinic
oil from Karazhanbas oilfield was used for oil displacement
experiments.

2.2 Methods

13C NMR spectra of polymer samples in DMSO were reg-
istered on impulse Fourier NMR spectrometer Bruker 400 MHz
(Bruker, Germany). FTIR spectra were recorded with the help of
Carry 660 (Agilent, USA) in KBr pellets. DSC measurements were

performed on «LABSYS evo» (Setaram, France) at a heating rate
10°C/min. The M, M_ and M, one of the sample dissolved in
DMF was determined by using of gel-permeation chromato-
graph Malvern Viscotek 270 Dual Detector (UK) using the RI,
LALS, and RALS detectors. The average hydrodynamic size and
zeta-potential of colloid particles was determined with the help
of Malvern Zetasizer Nano 2590 (UK) at a room temperature.
The viscosity of polymer solutions was measured by Ubbelohde
viscometer at 25 + 0.1°C. A pour point of oil with and without
added depressants was measured by “S.D.M.-530” apparatus
(Germany) equipped by 3 chambers with constant temperatures
0, -17 and -34°C according to ASTM D-5853.

3. Results and Discussion

3.1 Monomer synthesis

Preliminary melted alkylamines were dropwise added to
acetoacetic ester (AAE) under the stirring during 3h at 60°C. The
reaction mixture was left overnight at room temperature. Table
1 demonstrates the synthetic protocol of alkylaminocrotonates
including the yield of abbreviated key products. Interaction
of AAE with alkylamines proceeds according to Scheme 1.
Alkylamino-but-2-enoic acid ethyl esters are more energetically
stable than alternative tautomeric forms — 3-alkylamino-butyric
acid ethyl esters due to conjugation of C=C and C=0 bonds and
formation of intramolecular hydrogen bonds [16].

3.2 Polymer synthesis

Polymerization of alkylaminocrotonates and MAA was
carried out in benzene at 70°C in the presence of AIBN. Addition
of methacrylic acid to alkylaminocrotonates leads to a formation
of betaine monomers which undergo radical polymerization in
the presence of AIBN (Scheme 2).

The monomer mixture was bubbled by nitrogen gas during
15 min, sealed into ampoule and thermostated at 70°C during 5 h.
After completion of polymerization reaction, the precipitated
product was washed out by acetone several times and dried at
70°C in vacuum oven up to constant mass. Table 2 represents
the synthetic conditions of alkylaminocrotonates.

The radical polymerization of 3-[(2-carboxypropyl)
alkylamino]-but-2-enoic acid ethyl esters leads to formation
hydrophobically modified linear polybetaines abbreviated as
CRODDA-MAA, CROTDA-MAA, CROHDA-MAA and CROODA-
MAA respectively.

3.3 Solubility

Hydrophobically modified polymeric betaines are soluble
in DMF, DMSO, THF, aqueous KOH; they are partially soluble in
benzene, toluene, o-xylene, and insoluble in methanol and satu-
rated hydrocarbons.

3.4 Preparation of polymer depressants

The CROODA-MAA (200, 500 and 1000 ppm) dissolved
in benzene was added to oil mixture of Buzachi-Mangyshlak
or Mangyshlak oil (200 mL) thermostated at 60°C and stirred
vigorously during 30 min. The treated by polymeric depressant
oil was cooled up of room temperature and the pour point
temperature (PPT) of oil was measured.

BecTHuK KasHY. Cepua xummyeckasn. — 2015. — Ne3(79)
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Scheme 1 — Formation of alkylaminocrotonates from AAE and alkylamines
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Scheme 2 — Polymerization of alkylaminocrotonates in the presence of MAA

Table 1 — The synthetic protocol of alkylaminocrotonates from AAE and alkylamines

. Number The mass of The mass Reaction Vield of Abbreviation of
Alkylamines of carbon . product,
alkylamine, g of AAE, g | temperature, °C monomers
atoms %

Dodecylamine 12 10 7.02 60 >95 CRODDA
Tetradecylamine 14 10 6.10 60 >95 CROTDA
Hexadecylamine 16 10 5.39 60 >95 CROHDA
Octadecylamine 18 10 4.83 60 >95 CROODA

Table 2 — Synthetic protocol of hydrophobically modified polymeric betaines

Alkylaminocrotonate
Amount of MAA, g AIBN, mg T, °C Yield of product, %
Abbreviation Mass, g
CRODDA 2.03 ~50
CROTDA 1.85 ~45
7 26.67
CROHDA 1.70 70 ~43
CROODA 1.58 ~39

ISSN 1563-0331 Chemical Bulletin of Kazakh National University 2015, Issue 3



14 Synthesis and characterization of hydrophobically modified...

c
CHy O
. d il |a
. HC—C—C—OH
—, / H
f H H H H H c"
H, O HC—N : : 2 - :
A e c C c c CHs
i T NN
H;C o_gr— \e H, I H, Ho Ha Ha H2|
T CH, b methylene groups
b C,C.,C"
dd.d" I |
H
>
@
aa' ) ]
i f e
MLMWMNH

I [ T T I I T I I [ T T I T T I I T I

T T T T
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O ppm

Figure 1 — 3C NMR spectra of CRODDA-MAA in DMSO

Table 3 — Identification of FTIR spectra of alkylaminocrotonate monomers

Wavenumber, cm™
Functional groups
CRODDA CROTDA CROHDA CROODA

V(CH),, 2923 (vs) 2918 (vs) 2925 (vs) 2922 (vs)

V(CH), 2853 (s) 2849 (s) 2855 (s) 2850 (s)

v(C=0) 1652 (vs) 1649 (vs) 1651 (vs) 1650 (vs)

v(C=C) 1610 (vw) 1604 (vw) 1608 (vw) 1605 (vw)

v(COC) 1099 (w) 1096 (w) 1095 (w) 1099 (w)
Band intensities and vibration types: vs — very strong; s — strong; m — moderate; w — weak; vw — very weak; s — symmetric; as —
asymmetric.

Table 4 - Identification of FTIR spectra of CRODDA-MAA, CROTDA-MAA, CROHDA-MAA and CROODA-MAA

Functional Wavenumber, cm™
groups CRODDA-MAA CROTDA-MAA CROHDA-MAA CROODA-MAA
v(OH) 3402 3422 3420 3419
v(CH) 2929 (vs) 2927(vs) 2928(vs) 2926(vs)
v(CH), 2856 (s) 2855(s) 2856(s) 2854(s)
v(C=0) 1701 (vs) 1703(vs) 1704(vs) 1703(vs)
v(COO),, 1541 (s) 1542(s) 1541(s) 1542(s)
v(COC),, 1182 (w) 1183(w) 1181(w) 1182(w)

Band intensities and vibration types: vs — very strong; s — strong; m — moderate; w — weak; vw — very weak; s — symmetric; as —
asymmetric.

BecTHuK KasHY. Cepua xummyeckasn. — 2015. — Ne3(79)
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3.5 3C NMR spectra of polymers

The structural unit and *C NMR spectra of CRODDA-MAA
together with identification of functional groups are shown in
Fig. 1. 3C NMR spectra of CROTDA-MAA, CROHDA-MAA and
CROODA-MAA are similar to CRODDA-MAA and differ from each
other only by additional methylene groups.

3.6 FTIR spectra

Identification of FTIR spectra of monomers and polymers is
given in Tables 3 and 4.

3.7 DSC measurements

DSC curves of CRODDA-MAA, CROTDA-MAA and CROODA-
MAA are shown in Fig. 2. Broad peaks at 64, 73 and 101°C
correspond to crystallization of long alkyl chains containing in
the backbone of macromolecules. The endothermic transitions

at 47, 58 and 89°C are also characteristic for dodecyl-,
tetradecyl- and octadecylamines respectively (data are not
shown). Crystallization temperature of hydrophobic groups in
macromolecular chains is higher than alkylamines probably due
to more ordered and densely structure. The broad peaks at the
interval of temperature 207-224°C can belong to crystallization
of whole macromolecules.

3.8 Viscosity

Hydrophobic polymers in aqueous KOH and in DMSO
behave like polyelectrolytes, the reduced viscosity gradually
increases with dilution (Fig. 3).

The lower viscosity of CROTDA and CROODA in DMSO may
be connected with lower dielectric constant of organic solvent
that retards the Coulomb repulsion of charged macromolecules.

Fal Exo
2 C
1.5
1
}: 05
s A
& 0
I
05
B
-1
15
-2
T T | T T T T | T T T T | T T I T
50 100 150 200 250
Sample Temperature (*C)
Figure 2 — DSC curves of CRODDA-MAA (a), CROTDA-MAA (b) and CROODA-MAA (c)
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Figure 3 — Concentration dependences of the reduced viscosities of CROTDA (1) and CROODA (2) in aqueous KOH (a)
and DMSO solutions (b)
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3.9 The molecular masses and molecular mass distribution
of CROHDA-MAA

The values of M, M, and M, of CROHDA-MAA are high
and the PDl is too wide (Table 5).

3.10 The average hydrodynamic size and zeta-potential of
hydrophobic polymers.

It is expected that in aqueous KOH, hydrophobic polybe-
taines will form micellar structure stabilized by hydrophobic
interactions of long alkyl groups, while in organic solvents, the

1847
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formation of reversible micelles stabilized by intra- or interionic
interactions of betaine groups is in favor as shown in Fig. 4.

The average hydrodynamic size and zeta-potential of
CROTDA-MAA and CROODA-MAA measured in dilute aqueous
KOH solutions are summarized in Table 6.

The average hydrodynamic size of macromolecules tends
to increase with the increasing polymer concentration due to
formation of bigger aggregates stabilized by hydrophobic inter-
actions. In DMSO, such tendency is also observed because of

;4
z

:

W

® ® ®
o © ©

Figure 4 — Schematic representation of formation of micellar structures of hydrophobic polybetaines in agueous
KOH and DMSO solutions

Table 5 — The molecular mass of hydrophobically modified polymeric betaine based on CROODA-MAA

Molecular mass, Dalton
Polymer P.D.I.
M, x10° M,, x10° M, x107
CROODA-MAA 1.56 8.85 4.68 5.68

Table 6 — The average hydrodynamic size and zeta-potential of CROTDA-MAA and CROODA-MAA in aqueous KOH and DMSO

ool Concentration, The average hydrodynamic size, nm Zeta-potential, mV
olymer .
gdL? Aqueous KOH DMSO Aqueous KOH DMSO
0.05 258 - -48.7 -4.3
0.10 306 338 -60.0 -7.6
CROTDA-MAA
0.20 316 411 -47.7 -8.2
0.30 1576 429 -30.1 -5.4
0.05 237 594 -47.8 -7.7
0.10 253 2600 -45.5 -6.5
CROODA-MAA
0.20 487 5333 -42.3 -4.6
0.30 1789 5560 -37.0 -3.5

BecTHuK KasHY. Cepua xummyeckasn. — 2015. — Ne3(79)
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formation of ionic associates. Extremely big aggregates in DMSO
are characteristic for CROODA-MAA having long alkyl chains. Ze-
ta-potential of macromolecules in both aqueous KOH and DMSO
is negative due to ionization of carboxylic groups. Much lower
zeta-potential of macromolecules in DMSO is probably con-
nected with the low dielectric permittivity of organic solvent (¢ =
39.5) leading to enhancement of charge compensation between
positive and negative charges of betaine groups.

3.11 pH dependent average hydrodynamic size and zeta
potential of diluted aqueous solutions of CROTDA-MAA and
CROODA-MAA

According to zeta-potential measurement, the isoelectric
point (IEP) of 0.01% aqueous solution of CROTDA-MAA corre-
sponds to pH 3.4. At the same time, the minimal size of CROT-
DA-MAA obtained from DLS data is around of pH 2.5 (Fig. 5a).
Such inconsistency may be attributed to fluctuation of the size
of macromolecules near of the IEP and experimental errors in
case of DLS measurements. The IEP of 0.01% aqueous solution
of CROODA-MAA according to zeta potential measurement cor-
responds to pH 2.7. This value is in good agreement with DLS
data (pH = 2.9) (Fig. 5b). Average hydrodynamic sizes of dilute
aqueous solution of CROTDA-MAA and CROODA-MAA varied in
the range of 40-150 nm and 70-150 nm respectively. Earlier [29],
the IEP of poly(carboxyethyl 3-aminocrotonate) was observed
near pH 2-2.1.
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3.12 Evaluation of pour point depressant ability of
hydrophobic polybetaines

Earlier, the PPT ability of CRODDA-AA (and MAA) was tested
with respect to Kumkol-Akshabulak oil mixture (89:11 wt.%)
[21]. Addition of 100 ppm CRODDA-MAA to crude oil decreased
the pour point temperature (PPT) from +15 to -3°C. Depression
of PPT was equal to 18°C. Later using our methodology [21],
authors of the work [22] synthesized wax inhibitors CRODDA-
MAA (or AA) and CROHDA-AA, and tested them as PPT and
viscosity reduction for Malaysian waxy crude. It has been
concluded that the effective wax inhibitor is CRODDA-AA, and
at optimal concentration of 1000 ppm, it reduces the PPT by
12°C, from 57 to 45°C. The viscosity of crude oil is reduced from
5421 cP to 3220 cP upon addition of 1000 ppm CRODDA-AA. We
have tested the hydrophobic polybetaine with the longest alkyl
chain, namely CROODA-MAA, as wax inhibitor with respect to
Mangyshlak and Buzachi-Mangyshlak (67:33 wt.%) crude oils
transporting through main pipeline (Table 7). Best results show
that CROODA-MAA with concentration of 500 ppm provides
the depression of PPT at 18°C for crude from Mangyshlak and
at 30°C for the oil mixture of Buzachi-Mangyshlak (67:33 wt.%).
While the same concentration (500 ppm) of the commercial
available polymeric depressant based on ethylene-vinylacetate
(EVA) copolymer exhibits the depression of PPT 15°C with
respect to Mangyshlak and 27°C with respect to Buzachi-
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Figure 5 — Dependences of the average hydrodynamic size and zeta-potential of CROTDA-MAA
and CROODA-MAA as a function of pH

Table 7 — Testing of CROODA-MAA as pour point depressant for Mangyshlak and Buzachi-Mangyshlak (67:33 wt.%) crude oils

Type of crude oil CROODA-MAA, ppm PPT, °C PPT depression, °C

0 +27 0

Mangyshlak
500 +9 18
0 +6 0
200 -12 18

Buzachi-Mangyshlak

(67:33 wt. %) 500 -24 30
1000 -24 30

ISSN 1563-0331

Chemical Bulletin of Kazakh National University 2015, Issue 3



18 Synthesis and characterization of hydrophobically modified...

Mangyshlak (67:33 wt.%) crude oils. Thus, the effectiveness
of CROODA-MAA is higher than EVA that is widely applied as
additive for oil transportation and paraffin inhibitors.

4. Conclusion

The hydrophobic polymeric betaines containing long
alkyl chains C,, C, C. and C, have been synthesized by
Michael addition reaction of hydrophobically modified
aminocrotonates and methacrylic acid. Polymeric betaines
were characterized by FTIR, NMR, DSC, DLS, viscometry and
zeta-potential measurements. The polymers were fully soluble
in DMF and DMSO and formed colloid solutions in aqueous
KOH. Low solubility of polymers was observed in aromatic
hydrocarbons (benzene, toluene, o-xylene). In aqueous solution
the hydrophobically modified polymeric betaines behave
polyelectrolyte character. The average hydrodynamic size and
zeta potential of diluted aqueous solutions of hydrophobic
polybetainess containing dodecyl-, tetradecyl- and octadecyl
groups were studied as a function of pH. Anomalous low values
of the isoelectric point (IEP) of amphoteric macromolecules

were found to be in the range of pH 2.7-3.4. According to DLS
data the average size of macromolecules in dependence of pH
changed from 230 to 5560 nm. Zeta-potential of amphoteric
macromolecules in aqueous solution is much higher than that
of DMSO. The formation of “schizophrenic” micelle structures
is responsible for structural organization of hydrophobic
polybetaines. In pure DMSO the low soluble in organic solvent
betaine parts tend to aggregate and form intra- or interchain
associates surrounded by hydrophobic corona. While in aqueous
KOH the reversible micelle structure is stabilized by hydrophobic
interactions of long alkyl chains. The synergistic effect of
hydrophobic polybetaines in combination with commercial
available ethylene-vinylacetate copolymers was observed in
decreasing of the pour point temperatures of high paraffinic oils.
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