Получение люминесцентного материала на основе NaBaY(BO₃)₂, легированного ионами тербия и европия

Ж.К. Оразов¹, А.К. Болатов^{1*}, Н.Г. Кононова², В.С. Шевченко², К.А. Кох^{2,3}, Б.М. Уралбеков¹, А.Б. Кузнецов², А.Е. Кох²

¹Центр физико-химических методов исследования и анализа, Казахский национальный университет имени аль-Фараби, Алматы, Казахстан ²Институт геологии и минералогии имени В.С. Соболева, Новосибирск, Россия ³Новосибирский государственный университет, Новосибирск, Россия ²E-mail: assetbolatov@gmail.com

Тербий және европий иондарымен легирленген NaBaY(BO₃)₂ негізіндегі люминесцентті материалды алу

Ж.Қ. Оразов¹, А.Қ. Болатов^{1*},
 Н.Г. Кононова², В.С. Шевченко²,
 К.А. Кох^{2,3}, Б.М. Уралбеков¹,
 А.Б. Кузнецов², А.Е. Кох²

¹Физика-химиялық зерттеу және талдау әдістері орталығы, Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан ²В.С. Соболев атындағы геология және минералогия институты, Новосібір, Ресей ³Новосібір мемлекеттік университеті, Новосібір, Ресей *E-mail: assetbolatov@qmail.com Новый люминесцентный материал на основе сложного бората NaBaY(BO₃)₂, легированный ионами Tb³⁺ и Eu³⁺, получен методом высокотемпературного твердофазного синтеза. Методом рентгенофазового анализа показано, что NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺ кристаллизуется в тригональной сингонии с пространственной группой R-3m и изотипно минералу бючлииту K₂Ca(CO₃)₂. Кристаллическая структура люминофора является слоистой, сформированной из [BO₃] треугольников, [YO₆] октаэдров, [BaO₃] и [NaO₃] полиздров. Рассчитанные значения параметров элементарной ячейки составляют для NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺: a=5,3510(6) Å, c=17,9338(3) Å, V=444,71(2) Å³. Исследованы люминесцентные свойства NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺:

Ключевые слова: NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺; кристаллическая структура; легирование; люминесцентный материал.

Тb³⁺ және Eu³⁺ иондарымен легирленген, NaBaY(BO₃)₂ күрделі боратына негізделген жаңа люминесцентті материал жоғары температуралы қатты фазалы синтез нәтижесінде алынды. Рентгендік дифракциялық талдау әдісін қолдана отырып, NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺ қосылысы тригональдық жүйеде R-3m кеңістік тобымен кристалданатыны және бючлиит минералына K₂Ca(CO₃)₂ изотипті екені көрсетілді. Люминофордың кристалдық құрылымы қабатталған, [BO₃] үшбұрыштарынан, [YO₆] октаэдрлерден, [BO₉] және [NaO₉] полиэдрлерден құрылған. NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺ үшін есептелген бірлік ұяшық параметрлері келесідей болды: a=5,3510(6)Å, с=17,9338(3) Å, V=444,71(2)Å³. NaBaY(BO₃)₂:0,07Tb³⁺:0,1Eu³⁺ қосылысының люминесценттік қасиеттері зерттелді.

Түйін сөздер: NaBaY(BO₃)₂:0,07Tb³+:0,1Eu³+; кристалдық құрылым; легирлеу; люминесцентті материал.

A new luminescent material based on complex borate NaBaY(BO₃)₂ doped with Tb³⁺ and Eu³⁺ ions was obtained by high-temperature solid-state synthesis. Using X-ray diffraction analysis it was shown that NaBaY(BO₃)₂:0.07Tb³⁺:0.1Eu³⁺ crystallizes in trigonal system with the space group R-3m and isotypic with the mineral buetschliit K₂Ca(CO₃)₂. The crystal structure of the phosphor is layered, formed from [BO₃] triangles, [YO₆] octahedra, [BaO₉] and [NaO₉] polyhedra. The calculated unit cell parameters for NaBaY(BO₃)₂:0.07Tb³⁺:0.1Eu³⁺ are: a=5.3510(6) Å, c=17.9338(3) Å, V=444.71(2) Å³. The luminescent properties of NaBaY(BO₃)₂:0.07Tb³⁺:0.1Eu³⁺ were studied.

Keywords: NaBaY(BO₃)₂:0.07Tb³⁺:0.1Eu³⁺; crystal structure; doping; luminescent material.

Obtaining of luminescent material based on NaBaY(BO₃)₂ doped with terbium and europium ions

Zh.K. Orazov¹, A.K. Bolatov^{1*}, N.G. Kononova², V.S. Shevchenko², K.A. Kokh^{2,3}, B.M. Uralbekov¹, A.B. Kuznetsov², A.E. Kokh²

¹Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan ²Sobolev Institute of Geology and Mineralogy, Novosibirsk, Russia ³Novosibirsk State University, Novosibirsk, Russia *E-mail: assetbolatov@gmail.com

(2020) Chem Bull Kaz Nat Univ 2:10-15

УДК 546.05:54.01

CHEMICAL BULLETIN

of Kazakh National University

http://bulletin.chemistry.kz/

https://doi.org/10.15328/cb1122

Получение люминесцентного материала на основе NaBaY(BO₃)₂, легированного ионами тербия и европия

Ж.К. Оразов¹, А.К. Болатов^{1*}, Н.Г. Кононова², В.С. Шевченко², К.А. Кох^{2,3}, Б.М. Уралбеков¹, А.Б. Кузнецов², А.Е. Кох²

¹Центр физико-химических методов исследования и анализа, Казахский национальный университет имени аль-Фараби, Алматы, Казахстан ²Институт геологии и минералогии имени В.С. Соболева, Новосибирск, Россия

³Новосибирский государственный университет, Новосибирск, Россия

*E-mail: assetbolatov@gmail.com

1. Введение

Соединения боратов редкоземельных элементов применяются в качестве нелинейно-оптических (НЛО) материалов, люминофоров и др. [1-3]. В настоящее время синтезировано множество боратов в двойных, тройных и четверных системах [4-6].

При исследовании четверной системы R_2O_3 -MeO- M_2O - B_2O_3 открыты новые функциональные бораты (где, М – щелочной металл, Ме – щелочноземельный металл, R – редкоземельный элемент), в том числе, бораты с люминесцентными свойствами. Также, в системе R_2O_3 -MeO- M_2O - B_2O_3 был открыт ряд новых соединений, а именно: MBaYB₆O₁₂ (M = Rb, Cs) [7], LiCaTb₅(BO₃)₆ [8], LiSrTb₂(BO₃)₃ [9] и LiCdRe₅(BO₃)₆ [10], которые являются потенциальными магнитооптическими материалами; соединения K_7 М^{II}RE₂(B_5O_{10})₃ [11,12] и K_7 CaR₂(B_5O_{10})₃ [13-14] были предложены в качестве потенциальных НЛО материалов.

Опубликованный авторами обзор по боратам в системе М₂O-BaO-R₂O₃-B₂O₃ [15] показал, что имеется большой потенциал поиске перспективных в люминесцентных соединений на основе NaBaR(BO₃)₂, КСаR(BO₃)₂, KSrR(BO₃)₂. Эти боратные соединения являются подходящими матрицами для различных легирующих ионов благодаря наличию I, II, III-валентных позиций в структуре (катионы щелочных, щелочноземельных и элементов). редкоземельных Наличие катионовразбавителей в структуре боратов обеспечивает

оптимальное расстояние между люминесцентными центрами, что приводит к уменьшению концентрационного тушения люминесценции. Кроме того, указанные материалы обладают относительно высокими показателями механической прочности и химической устойчивости [15-19].

В данной работе новый люминесцентный материал на основе сложного бората NaBaY(BO₃)₂ (далее по тексту NBY), легированный ионами Tb³⁺ и Eu³⁺ (далее по тексту NBY:0,07Tb³⁺:0,1Eu³⁺), получен высокотемпературным твердофазным синтезом. Параметры элементарной ячейки полученного соединения уточнены методом Le Bail по данным рентгеновской дифрактометрии на порошке. Приводятся люминесцентные свойства этого материала.

2. Эксперимент

2.1 Подготовка образцов

Соединение NBY:0,07Tb³⁺:0,1Eu³⁺ было синтезировано двухстадийной высокотемпературной твердофазной реакцией по методике, описанной в патенте [20]. ВаCO₃ (99,9%), Na₂CO₃ (99,9%), Y₂O₃ (99,9%), H₃BO₃ (99,5%), Eu₂O₃ (99,99%) и Tb₄O₇ (99,99%) (предоставленные Chemcraft, Россия) использовали в качестве исходных материалов.

Стехиометрические количества прекурсоров были взвешены на аналитических весах, тщательно измельчены и гомогенизированы в агатовой ступке. В дальнейшем смесь помещали в платиновый тигель, проводили предварительный нагрев при 700 °C в течение 12 ч, а после перетирали в ступке. Конечную реакцию проводили при температуре, которую определяли путем пошагового повышения температуры на 50°С, начиная от 750°С, на каждой ступени температуру выдерживали в течение 12 ч. Твердофазный синтез проводили в однозонной нагревательной установке (Лаборатория роста кристаллов, ИГМ СО РАН, Россия). После охлаждения печи до комнатной температуры продукты реакции были растерты в порошок и проанализированы методом РФА.

2.1 Исследование и описание образцов

Фазовый анализ и параметры элементарной ячейки легированного бората были определены методом рентгеновской дифракции на порошке с использованием дифрактометра Miniflex 600 (Япония), работающий на СиКа излучении, с диапазоном сканирования от 5° до 80°, шаг сканирования 0,02°/шаг, а также с использованием метода Le Bail. Спектры фотолюминесценции (PL) и возбуждения (PLE) были получены с использованием спектрофлуориметра с ксеноновой лампой SOLAR СМ 2203 (Беларусь).

3. Результаты и обсуждения

3.1 Кристаллическая структура

На рисунках 1-2 представлены результаты порошкового РФА и уточнения параметров кристаллической решетки, согласно которым исследуемый образец NBY:0,07Tb³⁺:0,1Eu³⁺ изоструктурен KBaY(BO₃)₂ (далее по

Рисунок 1 – Рентгендифрактограмма NBY:0,07Tb³⁺:0,1Eu³⁺

тексту КВҮ), изотипный с минералом бючлиитом К₂Ca(CO₃)₂, и кристаллизуется в тригональной сингонии с пространственной группой R-3m [21-22]. Следует также отметить наличие примесных фаз NBY:0,07Tb³⁺:0,1Eu³⁺ со структурой NBY, кристаллизующейся в тригональной системе с пространственной группой R-3 [15-18], в количестве 4% и оксида иттрия в количествах меньше 1%.

Рисунок 2 – Экспериментальная (синяя) и рассчитанная (зеленая) рентгенограммы и их разностный профиль (голубой) для рентгенограммы NBY:0,07Tb³⁺:0,1Eu³⁺ по методу Ли Бэйла с использованием программы GSAS

Вестник КазНУ. Серия химическая. – 2020. – № 2

Структура NBY:0,07Tb³⁺:0,1Eu³⁺ слоистая, состоящая из сдвоенных слоев плоских BO₃ треугольников, соединенных в двумерный каркас редкоземельными атомами, которые, в свою очередь, образуют октаэдр путем координирования с 6 атомами О. Двухслойный пакет $\{M[A(BO_3)]_2\}$ является базисным строительным блоком данного класса структур. Прототипом можно считать борат Ba₂Mg(BO₃)₂ [23], в нем нейтральные по заряду пакеты $\{Mg[Ba(BO_3)]_2\}$ упакованы в ромбоэдрической ячейке в шестислойную укладку. В структуре NBY:0,07Tb³⁺:0,1Eu³⁺ катионы Ba²⁺ и Na⁺ координированы с 9 атомами О и разупорядочены по A-позициям, в результате структура характеризуется шестислойным с-периодом.

Рассчитанные значения параметров элементарной ячейки составляют для NBY:0,07Tb³⁺:0,1Eu³⁺ : a=5,3510(6) Å, c=17,9338(3) Å, V=444,71(2) Å³. Для структурной модификации NBY параметры элементарной ячейки: a=5,3508(5) Å, c=35,9899(2) Å, V=892,40(1) Å³.

3.2 Люминесцентные свойства

В спектре возбуждения наблюдается широкая полоса в диапазоне от 200 до 300 нм с максимумом около 246 нм, которая обусловлена 4f \rightarrow 5d электронным переходом в ионе Tb³⁺. Кроме того, наличие полос в спектре возбуждения NBY:0,07Tb³⁺:0,1Eu³⁺ объясняется переносом заряда между атомами в ковалентной связи Eu³⁺-O²⁻, т.е. с переходом электрона с орбитали кислорода на орбиталь европия 4f⁶. Линии в более длинноволновой области спектра связаны с переходами внутри иона Eu³⁺, которые могут быть приписаны переходам ⁷F₁ \rightarrow ⁵D₁ (рисунок 3) [21, 24-27].

Спектры люминесценции соединения NBY:0,07Tb³⁺:0,1Eu³⁺ показывают интенсивное характеристическое зеленое и красное свечения (рисунок 4). Спектр фотолюминесценции, возбуждаемый длиной волны 246 нм, состоит из полос при 475-490 нм (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$), 542 и 552 нм (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), 590 нм (${}^{5}D_{4} \rightarrow {}^{7}F_{4}$) и 620 нм (${}^{5}D_{4} \rightarrow {}^{7}F_{3}$), обусловленных хорошо известными переходами атомных термов тербия ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ (J=6, 5, 4, 3). Кроме того, в спектре люминесценции наблюдаются характеристические линии эмиссии иона Eu³⁺, соответствующих переходам электронов внутри 4f-оболочки при 590 нм (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$), 612 нм (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$), 664 нм (${}^{5}D_{0} \rightarrow {}^{7}F_{3}$), 678 нм (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$) и 696 нм (${}^{5}D_{0} \rightarrow {}^{7}F_{5}$).

4. Заключение

Высокотемпературным твердофазным методом был получен новый люминесцентный материал состава NBY:0,07Tb³⁺:0,1Eu³⁺, определены его параметры кристаллической структуры и люминесцентные свойства. Наличие линий на в спектре люминесценции, характерных ионам тербия (в области 500-550 нм) и европия (в области 600-650 нм), подтверждает внедрение этих ионов в матрицу NBY, и дает возможность получения новых перспективных люминофоров от красного до зеленого Рисунок 3 – Спектр возбуждения для NBY:0,07Tb³⁺:0,1Eu³⁺, при длине волны испускания 590 нм

Рисунок 4 — Спектр люминесценции NBY:0,07Tb³⁺:0,1Eu³⁺, при длине волны возбуждения λ=246 нм

цвета свечения для изготовления диодных ламп. В дальнейшем планируется детальное изучение механизма передачи энергии между люминесцентными центрами в NBY:0,07Tb³⁺:0,1Eu³⁺.

Благодарности

Работа была выполнена за счет грантового финансирования научных исследований Министерства образования и науки Республики Казахстан по теме: ИРН АР05130794 "Новые редкоземельные бораты: синтез, кристаллохимические особенности, оптические свойства".

Литература

1 Chen C., Wu Y., Jiang A., Wu B., You G., Li R., Lin S. New nonlinear-optical crystal: LiB₃O₅ // Journal of the Optical Society of America B: Optical Physics. – 1989. – Vol.6, Is.4. – P.616-621.

2 Cheng L.K., Bosenberg W., Tang C.L. Growth and characterization of low temperature phase barium metaborate crystals // Journal of Crystal Growth. – 1988. – Vol.89, Is.4. – P.553-559.

Jiang H., Li J., Wang J., Hu X., Liu H., Teng B., Zhang C., Dekker P., Wang P. Growth of Yb:YAl₃(BO₃)₄ crystals and their optical and self-frequency-doubling properties //Journal of crystal growth. – 2001. – Vol.233, Is.1. – P.248-252.

4 Wang D.Y., Chen T.M., Cheng B.M. Host sensitization of Tb^{3+} ions in tribarium lanthanide borates Ba (3) Ln (BO₃)(3)(Ln= Lu and Gd) // Inorganic Chemistry. – 2012. – Vol.51, Is.5. – P.2961-2965.

5 Wu Y., Ding D., Pan S., Yang F., Ren, G. Luminescence characteristics of $Ce^{3+-}doped Lu_{1-x}Sc_xBO_3$ solid solution single crystals grown by Czochralski method // Optical Materials. – 2011. – Vol.33, Is.4. – P.655-659.

6 Kuznetsov A.B., Kokh K.A., Kononova N.G., Shevchenko V.S., Rashchenko S.V., et al. Growth and crystal structure of $Li_3Ba_4S-c_3B_sO_{22}$ borate and its Tb^{3+} doped green-emitting phosphor // Journal of Luminescence. – 2020. – Vol.217. – P.116755.

7 Chen X., Zhang F., Shi Y., Sun Y., Yang Z., Pan, S. MBaYB₆O₁₂ (M=Rb, Cs): two new rare-earth borates with large birefringence and short ultraviolet cutoff edges // Dalton Transactions. – 2018. – Vol.47, Is.3. – P.750-757.

8 Li R. K., Wu C. C., Xia M. J. LiCaTb₅(BO₃)₆: A new magneto-optical crystal promising as Faraday rotator // Optical Materials. – 2016. – Vol.62. – P.452-457.

9 Chen P., Xia M., Li R. K. A terbium rich orthoborate $LiSrTb_2(BO_3)_3$ and its analogues // New Journal of Chemistry. – 2015. – Vol.39, Is.12. – P.9389-9395.

10 Xia M., Zhai K., Lu J., Sun Y., Li R.K. Orthoborates LiCdRE₅(BO₃)₆ (RE= Sm–Lu and Y) with Rare-Earth Ions on a Triangular Lattice: Synthesis, Crystal Structure, and Optical and Magnetic Properties // Inorganic chemistry. – 2017. – Vol.56, Is.14. – P.8100-8105.

11 Mutailipu M., Xie Z., Su X., Zhang M., Wang Y., Yang Z., Pan S. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials // Journal of the American Chemical Society. – 2017. – Vol.139, Is.50. – P.18397-18405.

12 Xie Z., Mutailipu M., He G., Han G., Wang Y., Yang Z., Pan S. A series of rare-earth borates K₇MRE₂B₁₅O₃₀ (M= Zn, Cd, Pb; RE= Sc, Y, Gd, Lu) with large second harmonic generation responses // Chemistry of Materials. – 2018. – Vol.30, Is.7. – P.2414-2423.

13 Kuznetsov A.B., Ezhov D.M., Kokh K.A., Kononova N.G., Shevchenko V.S., et al. Flux growth and optical properties of K₂CaY₂(B₂O₁₀), nonlinear crystal // Materials Research Bulletin. – 2018. – Vol.107. – P.333-338.

Kuznetsov A.B., Ezhov D.M., Kokh K.A., Kononova N.G., Shevchenko V.S., et al. Nonlinear optical crystals K₇CaR₂(B₅O₁₀)₃ (R= Nd, Yb), growth and properties // Journal of Crystal Growth. – 2019. – Vol.519. – P.54-59.

Uralbekov B., Shevchenko V., Kuznetsov A., Kokh A., Kononova N., et al. Novel compounds in the MMeR(BO_3)₂ borate family (M= alkali metal, Me= alkaline earth metal, R= rare-earth element): Syntheses, crystal structures and luminescent properties // Journal of Luminescence. – 2019. – Vol.216. – ID.116712.

16 Seryotkin Y.V., Bakakin V.V., Kokh A.E., Kononova N.G., Svetlyakova T.N., et al. Synthesis and crystal structure of new layered BaNaSc(BO₃), and BaNaY(BO₃), orthoborates // Journal of Solid State Chemistry. – 2010. – Vol.183, Is.5. – P.1200-1204.

17 Svetlyakova T.N., Kokh A.E., Kononova N.G., Fedorov P.P., Rashchenko S.V., Maillard A. Search for compounds of the NaBaR(BO_3)₂ family (R= La, Nd, Gd, and Yb) and the new NaBaYb(BO_3)₂ orthoborate // Crystallography Reports. – 2013. – Vol.58, Is.1. – P.54-60.

18 Kononova N., Shevchenko V., Kokh A., Nabeeva T., Chapron D., Maillard A., et al. Synthesis of New Isostructural Orthoborates NaBaR(BO₃)₂ with R= Tb, Dy, Ho, Er, Tm and Lu // Materials Research. – 2016. – Vol.19, Is.4. – P.834-838.

19 Kokh A., Kononova N., Shevchenko V., Seryotkin Y., Bolatov A., Abdullin K., et al. Syntheses, crystal structure and luminescence properties of the novel isostructural KSrR(BO₃)₂ with R= Y, Yb, Tb // Journal of Alloys and Compounds. – 2017. – Vol.711. – P.440-445.
20 Евразийский Патент №025559. Фотолюминесцентный материал редкоземельного ортобората и способ его получения/ Kox A.E., Кононова Н.Г., Шевченко В.С., Сереткин Ю.В., Болатов А.К., Уралбеков Б.М., Буркитбаев М.; опубл. 30.01.2017, Бюл. Is.1'2017. – 557 с.

Gao J., Song L., Hu X. A buetschliite-type rare-earth borate, KBaY(BO₃)₂ // Solid State Sciences. – 2011. – Vol.13, Is.1. – P.115-119.

22 Kononova N.G., Shevchenko V.S., Kokh A.E., Bolatov A.K., Uralbekov B.M., et al. Synthesis of two new orthoborates KBaPr(BO₃)₂ and KBaNd(BO₃)₂ // Crystal Research and Technology. – 2017. – Vol.52, Is.8. – P.1700024.

Akella A., Keszler D. A. Structure and Eu²⁺ luminescence of dibarium magnesium orthoborate // Materials research bulletin. – 1995. – Vol.30, Is.1. – P.105-111.

Tang H., Li Y., Yang R., Gao W. Phase formations and red-luminescence enhancement of Eu^{3+} -activated NaBaY(BO₃)₂ phosphors // Journal of Luminescence. – 2019. – Vol.208. – P.253-258.

Geng W., Zhou X., Ding J., Wang Y. NaBaY(BO₃)₂: Ce³⁺, Tb³⁺: A novel sharp green-emitting phosphor used for WLED and FEDs // Journal of the American Ceramic Society. – 2018. – Vol.101, Is.10. – P.4560-4571.

Peng Y., Lian Z., Zhang L., Shen G., Wang X., Yan Q. Ce³⁺/Tb³⁺ co-doped KBaY (BO3) 2: A color-tunable blue-green phosphor for near-UV white LEDs // Materials Express. – 2014. – Vol.4, Is.6. – P.533-538.

27 Freidzon A.Y., Kurbatov I.A., Vovna V.I. Ab initio calculation of energy levels of trivalent lanthanide ions // Physical Chemistry Chemical Physics. – 2018. – Vol.20, Is.21. – P.14564-14577.

References

1 Chen C, Wu Y, Jiang A, Wu B, You G, et al (1989) J Opt Soc Am B 6:616-621. https://doi.org/10.1364/JOSAB.6.000616

2 Cheng LK, Bosenberg W, Tang CL (1988) J Cryst Growth 89:553-559. https://doi.org/10.1016/0022-0248(88)90218-7

3 Jiang H, Li J, Wang J, Hu XB, Liu H, Teng B, Wang P (2001) J Cryst Growth 233:248-252. https://doi.org/10.1016/S0022-0248(01)01562-7

4 Wang DY, Chen TM, Cheng BM (2012) Inorg Chem 51:2961-2965. https://doi.org/10.1021/ic202241h

5 Wu Y, Ding D, Pan S, Yang F, Ren G (2011) Opt Mater 33:655-659. https://doi.org/10.1016/j.optmat.2010.11.024

6 Kuznetsov AB, Kokh KA, Kononova NG, Shevchenko VS, Rashchenko SV, et al (2020) J Lumin 217:116755. https://doi. org/10.1016/j.jlumin.2019.116755

7 Chen X, Zhang F, Shi Y, Sun Y, Yang Z, Pan S (2018) Dalton Trans 47:750-757. https://doi.org/10.1039/C7DT04223J

8 Li RK, Wu CC, Xia MJ (2016) Opt Mater 62:452-457. https://doi.org/10.1016/j.optmat.2016.10.025

9 Chen P, Xia M, Li RK (2015) New J Chem 39:9389-9395. https://doi.org/10.1039/C5NJ01913C

10 Xia M, Zhai K, Lu J, Sun Y, Li RK (2017) Inorg Chem 56:8100-8105. https://doi.org/10.1021/acs.inorgchem.7b00756

11 Mutailipu M, Xie Z, Su X, Zhang M, Wang Y, Yang Z, Pan S (2017) J Am Chem Soc 139:18397-18405. https://doi.org/10.1021/ jacs.7b11263

12 Xie Z, Mutailipu M, He G, Han G, Wang Y, Yang Z, Pan S (2018) Chem Mater 30:2414-2423. https://doi.org/10.1021/acs. chemmater.8b00491

13 Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2018) Mater Res Bull 107:333-338. https://doi. org/10.1016/j.materresbull.2018.07.037

14 Kuznetsov AB, Ezhov DM, Kokh KA, Kononova NG, Shevchenko VS, et al (2019) J Cryst Growth 519: 54-59. https://doi. org/10.1016/j.jcrysgro.2019.05.007

15 Uralbekov B, Shevchenko V, Kuznetsov A, Kokh A, Kononova N, et al (2019) J Lumin 216:116712. https://doi.org/10.1016/j. jlumin.2019.116712

16 Seryotkin YV, Bakakin VV, Kokh AE, Kononova NG, Svetlyakova TN, et al (2010) J Solid State Chem 183:1200-1204. *https://doi.org/10.1016/j.jssc.2010.03.005*

17 Svetlyakova TN, Kokh AE, Kononova NG, Fedorov PP, Rashchenko SV, Maillard A (2013) Crystallogr Rep 58:54-60. *https://doi.* org/10.1134/S1063774513010136

18 Kononova N, Shevchenko V, Kokh A, Nabeeva T, Chapron D, et al (2016) Mater Res 19:834-838. https://doi.org/10.1590/1980-5373-MR-2016-0081

19 Kokh AE, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, et al (2017) J Alloys Comp 711:440-445. https://doi. org/10.1016/j.jallcom.2017.03.322

20 Eurasian Patent №025559. The photoluminescent material of rare-earth orthoborate and method for its production [Fotolyuminestsentnyy material redkozemel'nogo ortoborata i sposob yego polucheniya]/ Kokh AE, Kononova NG, Shevchenko VS, Seryotkin YV, Bolatov AK, Uralbekov BM, Burkitbayev M: published 30.01.2017, № 1'2017. (In Russian)

21 Gao J, Song L, Hu X, Zhang D (2011) Solid State Sci 13:115-119. https://doi.org/10.1016/j.solidstatesciences.2010.10.021

22 Kononova NG, Shevchenko VS, Kokh AE, Bolatov AK, Uralbekov BM, et al (2017) Cryst Res Technol 52:1700024. https://doi. org/10.1002/crat.201700024

23 Akella A, Keszler DA (1995) Mater Res Bull 30:105-111. https://doi.org/10.1016/0025-5408(94)00113-8

24 Tang H, Li Y, Yang R, Gao W (2019) J Lumin 208:253-258. https://doi.org/10.1016/j.jlumin.2018.12.058

25 Geng W, Zhou X, Ding J, Wang Y (2018) J Am Ceram Soc 101:4560-4571. https://doi.org/10.1111/jace.15693

26 Peng Y, Lian Z, Zhang L, Shen G, Wang X, Yan Q (2014) Mater Express 4:533-538. https://doi.org/10.1166/mex.2014.1195

27 Freidzon AY, Kurbatov IA., Vovna VI (2018) Phys Chem Chem Phys 20:14564-14577. https://doi.org/10.1039/C7CP08366A