Fe nanotubes: synthesis, structural and magnetic properties

  • Artem Leonidovich Kozlovskiy L.N. Gumilyov Eurasian National University, Astana
  • Maxim Vladimirovich Zdorovets L.N. Gumilyov Eurasian National University, Astana
  • Egor Yurievich Kanukov Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
  • Elena Evgenievna Shumskaya Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
  • Kairat Kamalovich Kadyrzhanov L.N. Gumilyov Eurasian National University, Astana
  • Vyacheslav Serafimovich Rusakov M.V. Lomonosov Moscow State University, Moscow

Abstract

 The article presents results of investigations of hollow Fe nanotubes obtained by electrochemical deposition into the pores of polyethylene terephthalate membranes. Morphological and structural parameters of the synthesized samples of nanotubes were studied by methods of scanning electron microscopy, X-ray and energy dispersive analysis. The investigations of the magnetic properties of nanotubes were provided by Mossbauer and vibration magnetometer methods. Macro- and micromagnetic parameters of nanotubes were determined. X-ray analysis showed that walls of nanotubes have a BCC structure with non- preferred direction and the crystal lattice parameter a = 2.8627 Å. Due to defects formation in the process of electrochemical deposition, the deformation of crystal lattices occurs at crystallites interfaces. It was also found that walls of nanotubes were formed by separate crystallites settled layer by layer. Based on the analysis of the study of dependence of the magnetization on magnetic field, it was found that the basic magnetic characteristics of arrays of Fe nanotubes decreased monotonously in the temperature range from 100 to 300 K.

Author Biographies

Artem Leonidovich Kozlovskiy, L.N. Gumilyov Eurasian National University, Astana

The department of nuclear physics, new materials and technologies, assistant professor

National Research Nuclear University “MEPhI”, Moscow, Russia

Maxim Vladimirovich Zdorovets, L.N. Gumilyov Eurasian National University, Astana

The department of nuclear physics, new materials and technologies, assistant professor

 

 

Egor Yurievich Kanukov, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
Department of cryogenic research
Elena Evgenievna Shumskaya, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
Department of cryogenic research
Kairat Kamalovich Kadyrzhanov, L.N. Gumilyov Eurasian National University, Astana
The department of nuclear physics, new materials and technologies, Professor
Vyacheslav Serafimovich Rusakov, M.V. Lomonosov Moscow State University, Moscow
Department of Physics, Professor

References

1  Dauginet-De Pra D, Ferain E, Legras R, Demoustier-Champagne S (2002) Nucl Instrum Meth B 196:81-88. http://dx.doi.org/10.1016/S0168-583X(02)01252-1

2  Guo P, Martin CR, Zhao Y, Ge J, Zare RN (2010) Nano Lett 10:2202-2206. http://dx.doi.org/10.1021/nl101057d

3  Shen C, Wang X, Zhang W, Kang F (2013) Scientific Reports 3:2294. http://dx.doi.org/10.1038/srep02294

4  Natelson D (2006) Nat Mater 5:853-854. http://dx.doi.org/10.1038/nmat1769

5  Chou SY, Krauss PR, Renstrom PJ (1996) Science 272:85-87. http://dx.doi.org/10.1126/science.272.5258.85

6  Boarino L, Borini S, Amato G (2009) J Electrochem Soc 156:K223-K226. http://dx.doi.org/10.1149/1.3232202

7  Ozel T, Bourret GR, Mirkin CA (2015) Nat Nanotechnol 10:319-324. http://dx.doi.org/10.1038/nnano.2015.33

8  Garcia R, Knoll AW, Riedo E (2014) Nat Nanotechnol 9:577-587. http://dx.doi.org/10.1038/nnano.2014.157

9  Bailey TC, Johnson SC, Sreenivasan SV, Ekerdt JG, Willson CG, Resnick DJ (2002) J Photopolym Sci Tec 15:481-486. http://dx.doi.org/10.2494/photopolymer.15.481

10  Vivas LG, Ivanov YP, Trabada DG, Proenca MP, Chubykalo-Fesenko O, Vázquez M (2013) Nanotechnology 24:105703. http://dx.doi.org/10.1088/0957-4484/24/10/105703

11  Rawtani D, Sajan T, Agrawal YK (2015) Rev Adv Mater Sci 40:177-187.

12  Mitchell DT, Lee SB, Martin CR (2002) J Am Chem Soc 124:11864-11865. http://dx.doi.org/10.1021/ja027247b

13  Liao SH, Chen KL, Wang CM, Chieh JJ, Horng HE, Wang LM, Wu C, Yang HC (2014) Sensors 14:21409-21417. http://dx.doi.org/10.3390/s141121409

14  Yen SK, Padmanabhan P, Selvan ST (2013) Theranostics 3:986-1003. http://dx.doi.org/ 10.7150/thno.4827

15  He HY (2016) Micropor Mesopor Mat 227:31-38. http://dx.doi.org/10.1016/j.micromeso.2016.02.038  

16  Liu Y,  Jiang H, Zhu Y, Yang X, Li C (2016) J Mater Chem A 4:1694-1701. http://dx.doi.org/10.1039/C5TA10551J

17  Boarino L, Borini S, Amato G (2009)  J Electrochem Soc 156:K223-K226. http://dx.doi.org/10.1149/1.3232202

18  Qin J, Nogués J, Mikhaylova M, Roig A, Muñoz JS, Muhammed M (2005) Chem Mater 17:1829-1834. http://dx.doi.org/10.1021/cm047870q

19  Hua Z, Yang S, Huang H, Lv L, Lu M, Gu B, Du Y (2006) Nanotechnology 17:5106-5110. http://dx.doi.org/10.1088/0957-4484/17/20/011

20  Zhou D, Wang T, Zhu MG, Guo ZH, Li W, Li FS (2011) Journal of Magnetics 16:413-416. http://dx.doi.org/10.4283/JMAG.2011.16.4.413

21  Shao P, Ji G, Chen P (2005) J Membrane Sci Vol.255:1-11. http://dx.doi.org/10.1016/j.memsci.2005.01.018

Published
2016-09-28
How to Cite
KOZLOVSKIY, Artem Leonidovich et al. Fe nanotubes: synthesis, structural and magnetic properties. Chemical Bulletin of Kazakh National University, [S.l.], n. 2, p. 4-11, sep. 2016. ISSN 2312-7554. Available at: <http://bulletin.chemistry.kz/index.php/kaznu/article/view/735>. Date accessed: 20 aug. 2017. doi: https://doi.org/10.15328/cb735.
Section
Physical Chemistry and Electrochemistry

Keywords

track membranes; electrochemical deposition; nanotubes; templated synthesis; magnetic properties