Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes

  • Artem Leonidovich Kozlovskiy Institute of Nuclear Physics, Almaty
  • Tatyana Yuryevna Meirimova L.N. Gumilyov Eurasian National University, Astana
  • Anastassiya Aleksandrovna Mashentseva Institute of Nuclear Physics, Almaty
  • Maxim Vladimirovich Zdorovets Institute of Nuclear Physics, Almaty
  • Egor Yuryevich Kanyukov SSPA «Scientific and Practical Material Research Centre of NAS of Belarus», Minsk
  • Dmitriy Vladimirovich Yakimchuk SSPA «Scientific and Practical Material Research Centre of NAS of Belarus», Minsk
  • Alexander Vladimirovich Petrov SSPA «Scientific and Practical Material Research Centre of NAS of Belarus», Minsk
  • Kairat Kamalovich Kadyrzhanov L.N. Gumilyov Eurasian National University, Astana
Keywords: track-etched membranes, template synthesis, nanotubes, nanowires

Abstract

In this paper, using the method of electrochemical template synthesis, ordered arrays of metallic nanostructures on the basis of cobalt with various dimensions (180-380 nm) were obtained. The diameter of Co-nanotubes was controlled by original polymer matrix, which provided to prepare arrays consisting of individually standing cobalt nanotubes. The crystal structure of the synthesized samples was studied by X-ray diffraction to determine cell parameters and crystallite size. Decrease of the conductive properties of Co - nanotubes can be explained by inhomogeneity of the crystallites formed during synthesis, because the growth rate of nanostructures directly affects the size of the crystallites.

Author Biographies

Artem Leonidovich Kozlovskiy, Institute of Nuclear Physics, Almaty
L.N. Gumilyov Eurasian National University, Astana
Anastassiya Aleksandrovna Mashentseva, Institute of Nuclear Physics, Almaty
L.N. Gumilyov Eurasian National University, Astana
Maxim Vladimirovich Zdorovets, Institute of Nuclear Physics, Almaty
L.N. Gumilyov Eurasian National University, Astana

References

1    Deiss E, Holzer F, Hass O (2002) Electrochim Acta 47:3995–4010. http://dx.doi.org/10.1016/S0013-4686(02)00316-X

2    Wang JG, Tian ML, Kumar N, Mallouk TE (2005) Nano Lett 5:1247-1253. http://dx.doi.org/10.1021/nl050918u

3    X-Z Li (2009) Mater Lett 63:578-580. http://dx.doi.org/10.1016/j.matlet.2008.12.002

4    Zhu YC, Bando Y (2003) Chem Phys Lett 372:640-644. http://dx.doi.org/10.1016/S0009-2614(03)01197-7

5    Huczko A (2000) Appl Phys A-Mater 70:365-376. http://dx.doi.org/10.1007/s003390000440

6    Duan J, Liu J, Cornelius TW et al (2009) Nucl Instrum Meth B 267:2567-2570 http://dx.doi.org/10.1016/j.nimb.2009.05.015

7    Sanchez-Barriga J, Lucas M, Rivero G et al (2007) J Magn Magn Mater 312:99-106 http://dx.doi.org/10.1016/j.jmmm.2006.09.020

8    Yavuz H, Kaygili O (2011) Radiat Eff Defect S 166:100-103. http://dx.doi.org/10.1080/10420150.2010.507671

9    Vivas LG, Ivanov YP, Trabada DG, Proenca MP, Chubykalo-Fesenko O, Vázquez M (2013) Nanotechnology 24:105703. http://dx.doi.org/10.1088/0957-4484/24/10/105703

10   Qin J, Nogués J, Mikhaylova M, Roig A, Muñoz JS, Muhammed (2005) Chem Mater 17:1829-1834. http://dx.doi.org/10.1021/cm047870q

11   Zhou D, Wang T, Zhu MG, Guo ZH, Li W, Li FS (2011) Journal of Magnetics 16:413-416. http://dx.doi.org/10.4283/JMAG.2011.16.4.413

12   Ohgai T, Hoffer X, Fabian A, Gravier L, Ansermet JP (2003) J Mater Chem 13:2530-2534. http://dx.doi.org/10.1039/b306581b

13   Rawtani D, Sajan TR, Agrawal YK (2015) Rev Adv Mater Sci 40:177-187.

14   Sarkar J, Khan GG, Basumallick A. (2007) Bull Mater Sci 30:271-290. http://dx.doi.org/10.1007/s12034-007-0047-0

15   Dave SR, Gao X. (2009) Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1:583-609. http://dx.doi.org/10.1002/wnan.051.

16   Liao SH, Chen KL, Wang CM, Chieh JJ, Horng HE, Wang LM, Wu C, Yang HC (2014) Sensors 14:21409-21417. http://dx.doi.org/10.3390/s141121409

17   Mitchell DT, Lee SB, Martin CR (2002) J Am Chem Soc 124:11864-11865. http://dx.doi.org/10.1021/ja027247b

18   Yen SK, Padmanabhan P, Selvan ST (2013) Theranostics 3:986-1003. http://dx.doi.org/10.7150/thno.4827

19   Kalska-Szostko B, Orzechowska E, Wykowska U. (2013) Colloid Surface B 111:509-516. http://dx.doi.org/10.1016/j.colsurfb.2013.05.033

20   Hua Z, Yang S, Huang H, Lv L, Lu M, Gu B, Du Y (2006) Nanotechnology 17:5106-5110. http://dx.doi.org/10.1088/0957-4484/17/20/011

21   Langford JI, Wilson AJC. (1978) J Appl Cryst 11:102-113. http://dx.doi.org/10.1107/S0021889878012844

Published
2015-09-30
How to Cite
Kozlovskiy, A., Meirimova, T., Mashentseva, A., Zdorovets, M., Kanyukov, E., Yakimchuk, D., Petrov, A., & Kadyrzhanov, K. (2015). Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes. Chemical Bulletin of Kazakh National University, 79(3), 72-80. https://doi.org/https://doi.org/10.15328/cb628
Section
Physical Chemistry and Electrochemistry